加速器・ビーム物理の機械学習ワークショップ2024

Last Update: Dec. 20, 2024
アブストラクト集

Program

The slides in this page are licensed under CC BY-NC-SA 4.0 unless otherwise noted in the file.
To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/

Day 1 (Nov. 25th Mon.)

Time Session/Chair person Title Presenter/Place
10:00 Registration Fukyu-to (普及棟)
11:00 XFEL Optimizer Demonstration Central Control Room (中央制御室)
12:00 Lunch Break
13:30 Tutorial 1
Iwai Eito
(JASRI/RIKEN)
Tutorial
(Bayesian Optimization and Anomaly Detection) [Slides]
Maesaka Hirokazu (RIKEN/JASRI)
14:30 Break
14:50 Tutorial 2
Maesaka Hirokazu
(RIKEN/JASRI)
Tutorial
(Convolutional Neural Network) [Slides]
Maesaka Hirokazu (RIKEN/JASRI)
15:20 Tutorial
(Reinforcement Learning) [Slides]
Yasutome Kenji (RIKEN)
15:50 Break
16:00 Site Tour
17:30 End Bus Departure: SPring-8 Gate at 17:55 for Aioi

Day 2 (Nov. 26th Tue.)

Time Session/Chair person Title Presenter/Place
 9:00 Registration Fukyu-to (普及棟)
 9:10 Oral Session 1
Yorita Tetsuhiko
(Osaka Univ. RCNP)
Greetings Maesaka Hirokazu (RIKEN/JASRI)
 9:20 Introduction to Reinforcement Learning and Challenges in Real World [Slides] Akatsuka Shunichi (Hitachi America, Ltd.)
 9:50 機械学習を用いたビームプロファイル画像からのビームパラメータ推定 北村 遼 (JAEA/J-PARC)
10:20 Break
10:40 Oral Session 2
Iwasaki Masako
(Osaka Metro. Univ.)
Constrained Bayesian Optimization of Beam Optics to reduce beam losses Andrea De Franco (QST)
11:10 Baysian optimization with safety function for beam optics tuning for heavy ion beam at RIBF [Slides] Nishi Takahiro (RIKEN Nishina Center)
11:40 機械学習による放射光リングビーム入射の最適化 [Slides] Sakurai Rei (Hiroshima Univ.)
12:00 Lunch
13:30 Oral Session 3
Nomura Masahiro
(J-PARC/JAEA)
Prediction for Combustion States of Waste-to-Energy Plants with Fuzzy Relational Maps of Sensors [Slides] Umano Motohide (Kanadevia Co.)
14:00 理研仁科センターでのNNの活用 Morita Yasuyuki (RIKEN)
14:30 ベイズ最適化によるサイクロトロン運転調整 Imura Tomoki (Osaka Univ. RCNP)
14:50 Break
15:10 Oral Session 4
Nishi Takahiro
(RIKEN Nishina Center)
GEANT4 を用いたILC 電子ドライブ陽電子源のパラメータ特性の解析 [Slides] Sasaki Yodai (Hiroshima Univ.)
15:50 説明可能 AI を用いた KEK 電子陽電子入射器調整性能向上に寄与する重要パラメータの推定 [Slides] Uemura Kosuke (Osaka Metro. Univ.)
16:10 Towards a practical ML-assisted injection tuning tool at SuperKEKB Kato Shinnosuke (Univ. Tokyo)
16:30 Transfer to Aioi Bus Departure: SPring-8 Gate at 16:55 for Aioi
18:00 Dinner   魚萬

Day 3 (Nov. 27th Wed.)

Time Session/Chair person Title Presenter/Place
9:00 Oral Session 5
Morita Yasuyuki
(RIKEN)
ILC電子ドライブ陽電子源の全体最適化に向けた機械学習の活用 Kuroguchi Shunpei (Hiroshima Univ.)
 9:20 ニューラルネットワークを用いたJ-PARC RCSペイントバンプ電源の波形パターン制御 [Slides] 杉田 萌 (JAEA)
 9:50 加速器での深層生成モデルCVAEの利用について [Slides] 野村 昌弘 (J-PARC/JAEA)
10:20 機械学習を用いた加速器状態診断の試み:KEK PF BPMデータを用いたオートエンコーダの再現性と説明可能性の探求 [Slides] 澤田 康輔 (呉高専)
10:40 Break
11:00 Oral Session 6
Yasutome Kenji
(RIKEN)
The Age of the Human Frame Problem Kuroguchi Shunpei (Hiroshima Univ.)
11:20 因果探索を用いたSuperKEKB運転の高度化 Arima Ryota (Univ. Tokyo)
11:40 SACLA/SPring-8 における機械学習を用いた取り組み, その実装と運用 [Slides] 岩井 瑛人 (JASRI/RIKEN)
12:10 Closing Remarks [Slides] Maesaka Hirokazu (RIKEN/JASRI)
12:20 End Bus Departure: 12:28 or 13:26 at SPring-8 Gate for Aioi

Copyright © RIKEN SPring-8 Center, Japan. All rights reserved.