Recent updates and prospects of SACLA (accelerator)

03/03/2025, SACLA Users' Meeting Eito Iwai, on behalf of SACLA/SPring-8 staffs JASRI/RIKEN SPring-8 Center

Roadmap for accelerator upgrades in SPring-8

Roadmap for accelerator upgrades in SPring-8

CERNCOURIER

IN FOCUS

ACCELERATING SCIENCEIN ASIA

· Global strategy of SPring-8 campus → Green facility

History of electrical power usage

➡ What is expected to be for the SACLA upgrade?

Concepts of 'SACLA-II' upgrade

- High repetition rate XFEL: > x10
- While keeping electrical power consumption
- How?

➡ Introducing <u>X-band technology</u> for efficient beam acceleration

- Merit
 - Compact and smaller volume $\gamma \rightarrow$ energy efficient
 - Shorter filling time

- Development items
 - Processing technology and corresponding cavity design
 - Stronger Wakefield effect

Concept of the efficient RF acceleration

► SACLA-II: X-band (11.4GHz) unit

SACLA: C-band (5.7GHz) RF unit

✓ x1/10 power consumption while keeping similar or better acceleration gradient \rightarrow pulse repetition rate x10 w/ same power consumption

Recent updates - How are we going to realize the upgrade?

- Key system upgrades in past
 - Pulse-by-pulse switching operation (since 2017)
 ✓ Gun, all RF units and a kicker magnet are controlled on a pulseby-pulse basis
 - Beam injection from SACLA to SPring-8 storage ring (since 2020)
- Recent updates after starting beam injection from SACLA to SPring-8
 - Introduced Al-driven beam optimizer
 - Pulse-by-pulse control also for quadrupole magnets
- Improved tunability and flexibility for better XFEL performance

Beam optimizer

- Introduced Al-driven automated tuning system; beam optimizer
 - Operation becomes more complicated even though the tuning time becomes constrained
 - Fully utilize the improved tunability and flexibility for efficient tuning and better XFEL performance

Pulse-by-pulse control also for quadrupole magnets

- Quadrupole magnets had been common even though beam energies were different for each pulse
- Optimized beam envelope for different beam energies for each pulse

E. Iwai et al.: J. Synchrotron Rad. 30, 1048 (2023)

Various optimization

- Spectral brightness
 - · A new spectrometer with enough resolution to measure shot-by-shot spectral-width online installed permanently (with great help of BL group)
 - · Optimized for spectral brightness of central wavelength
- Spectral shape
 - · Request from an user: "Suppress peak height in sideband less than 3 % of one of central wavelength"
 - · A "shoulder" often remains in spectrum even after the spectral brightness optimization 500000
- XFEL spatial profile
 - · Request from another user: "Round spatial profile with single 'core'"
 - Double (or sometimes multiple-) "cores" often appear in spatial profile
- Tailor-made XFEL

2.5·10°

2.10

1.5·10°

1·10°

Ongoing developments

- Short pulse XFEL
- X-band deflector

Short pulse XFEL - Introduction -

- 'Energy-chirp' and bunch compression
 - At the initial stage, electron bunch is placed off-crest phase to apply energy-chirp to the bunch
 - The energy-chirped bunch is compressed by velocity-bunching $(\beta < 1)$ and three chicanes $(\beta ~ 1)$

-band Acc. BC2

-band Acc.

band A

Short pulse XFEL

- Non-negligible 'reverse' energy-chirp was found, caused by Wakefield and space charge
- With the finite reverse energy-chirp, <u>another chicane on BL3</u> is expected to decompress the bunch, while the <u>double DBA ('dog-leg') on BL2</u> provides the opposite effect and is expected to further compress the bunch

Demonstration test

 Electron bunch decompression at BL3: Compare electron bunch lengths with/without chicane

(DCM+111, w/o norm, peak-base)

Electron bunch length fwhm [fs]

10.1

13.1

- ✓ Inserting a chicane makes electron bunch lengths longer by around ~ 3 fs
- ► XFEL pulse compression at BL2:

Compare XFEL pulse lengths by changing parameter of the double DBA

Parameter: 'R ₅₆ ' [µm]	-14	31	111	156	215
XFEL pulse length [fs] (Gauss)	13	14	10	8.2	2.7

w/o chicane

w/ chicane

✓ Preliminary measurements show clear tendency of XFEL pulse length reduction with the 'R₅₆' parameter

SCSS+ BL1 Undulators (4.5mx3) Ju-18 mm Kicker Combination of SR from Undulators (5mx21) Ju-18 mm Beam dump Combination of SFEL and SR SFEL and SR SFING-8 Combination of SFEL and SR

* With collaborative help of BL group

Future plan

- SCSS+ BL1 Undulators (4,5m/3) Jua-18 mm Combination of SFR from SFring-8 SR from SFR from SF
- (de)compression power ~ R_{56} ~ sum of dispersions(η) at bending magnets
- Introduce series of quadrupole magnets to BL3 chicane to change the sign of horizontal dispersion
 - ➡ Strong Q-mags (with the straight beam pass) are necessary
- Example of introducing 5 quadrupole magnets while chicane length is maintained the same as present

Ongoing developments: X-band deflector

X-band deflector

- 'Deflector': Horizontally kick the electron bunch according to arrival timing; can convert timing distribution to horizontal position distribution
 - ➡ Observe bunch length online to optimize for short pulse XFEL
- Why 'X-band' ?

Twice as current C-band; Faster frequency gives better resolution

H. Maesaka, et.al., PRAB 21, 050703 (2018

Goal is to realize X-band deflector with a timing resolution of 1 fs The observed bunch length information will be fully utilized by beam optimizer

Developing items

- <u>X-band deflector cavity</u>
- X-band spiral dummy-load
- X-band pulse compressor
- X-band driver amplifier
- · X-band klystron
- X-band modulator
- X-band LLRF system

Deflector cavity

- Introduced X-band: machining accuracy becomes more critical
- \cdot New scheme: longitudinally-split two halves \leftrightarrow conventional disk-loaded type
 - ➡ Expect cost reduction; for future mass production
- The deflector consists of 4 cavities
 Each cavity consists of 3 of 30cm-long units
 Each unit consists of two halves
- Cold model was measured and tuned
- High-power prototype will be delivered before next summer
- The 1st (out of 4) cavity within next FY

Cold model (regular cell block)

Schedule

	FY2024	FY2025	FY2026	FY2027	FY2028
7-cell high-power protytype	Manufac Fabricating, tuni	ture ng, brazing) High power te	st		
Other X-band related stuffs	Manufacture				
1st cavity (out of 4)		Manufacture	ligh power test		
2nd and 3rd cavity			Manufacture	High power test	
The last cavity				Manufacture High po	wer test
'X-band deflector'			Partially install the 1st cavit	у??	Fully installed and start operation

Concepts of 'SACLA-II' upgrade

- High repetition rate XFEL: > x10
- While keeping electrical power consumption
- How?

➡ Introduced <u>X-band technology</u> for efficient beam acceleration

- Merit
 - Compact and smaller volume \rightarrow energy efficient
 - Shorter filling time ____
- Development items
 - Processing technology and corresponding cavity design
 - Stronger Wakefield effect
- \checkmark Research on the key technology is already begun with short pulse XFEL and X-band deflector as ongoing practical application projects

- ← X-band deflector
- ← <u>Short pulse XFEL</u>

Summary

- Concept of the 'SACLA-II' upgrade
 - x10 repetition rate with same power consumption
 - Green and sustainable facility
 - X-band main linac
- Recent updates
 - Improved tunability and flexibility for better XFEL performance
 - Pulse-by-pulse control of quadrupole magnets
 - Al-driven beam optimizer
 - Short pulse XFEL
 - X-band deflector

→Strategic and coherent R&D underway toward SACLA-II upgrades in 203x Thank you for your attention!