Facility Update

Toshinori Yabuuchi on behalf of SACLA

SACLA Users' Meeting 2025 March 3-4, 2025@SACLA

- Highlights of activities after the last users' meeting
 - Machine operation status and proposal applications
 - Recent research activities
- Platform developments: current status and prospects
 - SACLA Basic Development Program
 - Developments at beamline and accelerator
- Recent measures to attract potential users
- Summary

- Highlights of activities after the last users' meeting
 - Machine operation status and proposal applications
 - Recent research activities
- Platform developments: current status and prospects
 - SACLA Basic Development Program
 - Developments at beamline and accelerator
- Recent measures to attract potential users
- Summary

З

The machine has been operated throughout this year for more than 6,000 hours as scheduled

40-50 proposals were approved to conduct experiments each term

Term

Publications in the last 12 months

nature photonics nature physics nature materials

- **18**, 685 (2024).
- 807 (2024).
- A. S. Johnson et al., All-optical seeding of a light-induced phase transition with correlated disorder, Nat. Phys. 20, 970 (2024).
- V.A. Stoica et al., Non-equilibrium pathways to emergent polar supertextures, Nat. Mater. 23, 1394 (2024).

nature communications

- 4043 (2024).
- *crystallography,* Nat Commun **15**, 5518 (2024).
- H. Sawada et al., Spatiotemporal dynamics of fast electron heating in solid-density matter via XFEL, Nat Commun 15, 7528 (2024).
- 10278 (2024).
- **15**, 10610 (2024).

_ REVIEW Δ

041010 (2024).

• J. Yamada et al., Extreme focusing of hard X-ray free-electron laser pulses enables 7 nm focus width and 10²² W cm⁻² intensity, Nat. Photon.

• A. Verma et al., Picosecond volume expansion drives a later-time insulator-metal transition in a nano-textured Mott insulator, Nat. Phys. 20,

• K. Barlow et al., Tracking nuclear motion in single-molecule magnets using femtosecond X-ray absorption spectroscopy, Nat Commun 15,

• B. Maity et al., Real-time observation of a metal complex-driven reaction intermediate using a porous protein crystal and serial femtosecond

• Q. Bertrand et al., Structural effects of high laser power densities on an early bacteriorhodopsin photocycle intermediate, Nat Commun 15,

• S. Berkowicz et al., Supercritical density fluctuations and structural heterogeneity in supercooled water-glycerol microdroplets, Nat Commun

• Y. Huang et al., Nanometer-Scale Acoustic Wave Packets Generated by Stochastic Core-Level Photoionization Events, Phys. Rev. X 14,

- Highlights of activities after the last users' meeting
 - Machine operation status and proposal applications
 - Recent research activities
- Platform developments: current status and prospects
 - SACLA Basic Development Program
 - Developments at beamline and accelerator
- Recent measures to attract potential users
- Summary

Platforms and instruments implemented through the Basic **Development Program provide unique capabilities at SACLA**

Opto-Spintronics Platform@BL1

Profs. I. Matsuda and H. Mimura (Tokyo Univ.)

The platform is widely used for multiple purposes in most experiments of materials science at BL1

Smooth Profile of High-power NS Laser@BL3

Prof. N. Ozaki (Osaka Univ.)

Optical systems making smoothed beam profiles are used in <u>almost all experiments at the platform.</u>

ž

Ongoing projects supported under Basic Development Programs are also expected to enhance the potential of research capabilities

- Portable single turn coil system for pulsed magnetic field beyond 100 T PI: Akihiko Ikeda, The University of Electro-Communications
- Structure analysis and chemical reaction tracking system PI: Daisuke Kosumi, Kumamoto University (\rightarrow Reported by Keisuke Kawakami, RIKEN)
- Measurement systems for biomolecular movies PI: So Iwata, Kyoto University (\rightarrow Reported by Eriko Nango, Tohoku University)
- Systems for structural dynamics studies with CITIUS PI: Bo B. Iversen, Aarhus University
- Mini-coil system for magnetized solids/plasmas studies with high-power ns laser PI: Bruno Albertazzi, LULI – CNRS – Ecole Polytechnique

Progress of the projects will be reported in the next session.

The expansion of ultra-fast pump capabilities with fs-laser is our major topic to be implemented in the near term

Presented in Users' Meeting 2024

Femtosecond laser operation has started at EH3 in 2024A

Fast pump capabilities with fs-laser pulses have also been extended at other beamlines

Shorter Pulse

- Few-cycle near-infrared pulses are available for use at EH2 (BL3) and EH4a (BL1).
- The spectra is broadened with Ar-filled hollow-core fibers.
- The typical pulse duration is ~ 8 fs, which is ~3-4 cycles of the NIR light.

THz Wave

- Intense THz pulses generated from an organic crystal with 1.5 μ m OPA pulses.
- The characteristics of THz pulses have been confirmed recently.
- The electric field was ~0.4 MV/cm at the focus.

CITIUS 20.2M, our new imaging detector with an area of ~30 cm squared, has recorded the first signals from XFELs

- The commissioning of CITIUS20.2M started in July 2024 with XFELs in EH3 at BL2.
- procedures of detector alignment.
- data compression, etc) and pipelines for typical applications.

Sensor	Sensor Material	Silicon	CITIUS 20.2M in EH3 BL2 (Jul. 202
	Thickness	650 µm	<image/>
	Pixel Size	72.6 µm	
	Pixel Number	0.28 Mpix (Sensor Module ea.)	
	Peak Signal	17,000 phs/pix (6 keV)	
	Typical Noise	25 e- rms	
	Frame Rate	60 Hz	
	Data Rate	1.6 GB/s (Digital Out)	
System	Imaging Area	321 x 393 mm ²	
	Pixel Number	20.2 Mpix	
	Data Rate	107 GB/s (Digital Out)	

In FY2024, significant progresses were made in the integration to SACLA's DAQ system and the

Developments of key systems has been started for future upgrades of SACLA

- Highlights of activities after the last users' meeting
 - Machine operation status and proposal applications
 - Recent research activities
- Platform developments: current status and prospects
 - SACLA Basic Development Program
 - Developments at beamline and accelerator
- Recent measures to attract potential users
- Summary

To date, more than 1,000 user experiments have been performed since we welcomed the first user in March 2012

A two-day hands-on lecture was held primarily for SR users to learn about XFEL experiments

Hands-on lecture on serial femtosecond crystallography (SFX) for structural biology

- The first lecture of this kind was held at SACLA.
- The lecture was held in February 2025 in collaboration with the external lecturers, Profs. Nango and Fujiwara (Tohoku Univ.).
- SFX was selected as the first target because of its well-established platform, DAPHNIS.
- Participants were both from academia (including grad students) and industry.

Program of Lecture

Lecture (2 hours) — Introduction of SFX, Crystallization, Data Processing - XFEL Measurements Demo (2 hours) **Practice (8 hours)** — Crystallization, Sample Preparation, Measurements, Data Collection, Data Processing

"Co-Pls" have been officially introduced in the proposal application system from the call for 2025A **PI: Principle Investigator**

Owe responsibilities to lead the project

Examples of Roles of Co-PI(s)

- instruments, methodologies, and techniques.
- ensure smooth execution of the proposed research.

Supervising multiple related projects based on deep knowledge and expertise in experimental

• Acting as the primary contact for communication with beamline scientists at the facility to

Notes: SACLA's beamline scientist can be a Co-PI.

Summary

- SACLA has been operated stably throughout this fiscal year, supporting 91 user experiments.
- In FY2024, new experimental capabilities, particularly in optical pumping, have been established. Unique platforms recently developed through the Basic Development general users.
- in the detectors and accelerators.

Program, including the sub-10 nm focusing system, are (or will be) made available to

• Further developments of key technologies are ongoing, not only in the beamlines but also

