Overview of SACLA Beamlines (BL1, 2, 3)

Taito Osaka, Gota Yamaguchi, Yuichi Inubushi, Tadashi Togashi on behalf of SACLA beamline group

Major Updates

CITIUS 20.2M Commissioning Started

Commissioning of **CITIUS 20.2M** detector has been started in FY2024, targetting SFX experiments at EH3 of BL2.

Commissioning & Pilot experiments: 2025A & 2025B \rightarrow **B. Iversen's talk** Opened for users: 2026A~ (?)

 \rightarrow *Poster* #7

Three BLs are operated under different machine conditions (e⁻ beam energy, photon energy, etc.), simultaneously. From the SACLA main linac, high-quality e⁻ bunches are delivered to the SPring-8 storage ring (1-2 shots/min in top-up mode).

Typical performance

SACLA

		BL1 (SX)	BL2 (HX)	BL3 (HX)
Photon energy		40 ~ 150 eV	4 ~ 22 keV	4 ~ 22 keV
Pulse duration		~30 fs (fixed)	<10 fs (fixed)	<10 fs (fixed)
Pink beam	Bandwidth (ΔE/E)	~0.01	~3x10 ⁻³	~3x10 ⁻³
	Pulse energy	∼90 µJ @100 eV	∼500 µJ @10 keV	∼700 μJ (up to 900 μJ) @10 keV
Monochromatic beam (Si 111 DCM/DCCM)	Bandwidth (ΔE/E)	-	1.3x10-4	1.3x10-4
	Pulse energy	-	∼10 µJ @10 keV	∼10–50 µJ @10 keV
Monochromatic beam (DCCM option)	Bandwidth (ΔE/E)	-	0.05–1.3×10 ⁻⁴ @10 keV (in air)	0.05–3.0x10 ^{–₄} @10 keV
	Pulse energy	-	depends on b.w.	depends on b.w.
Repetition rate		60 Hz	30 / 60 Hz	30 / 60 Hz
Advanced operation modes		-	Two color (SASE+SASE w/o delay)	Two color (SASE+SASE / SASE+mono) Self-seeding / SDO
Tailor-made XFEL generation		0	0	0

A diffraction pattern from lysozyme measured at EH3 of BL2

OH²

2 m

1000 2000 3000

New TM Booth for P&P Experiments at BL2

A new TM (timing monitor) booth will be constructed at BL2, enabling fs-resolution pump-probe experiments at BL2 with

Radiation-shielded TM booth

SPM: splitting & focusing mirror, BM2: beam monitor 2. Orange: replaced, Green: newly installed.

(1) non-destructive timing monitor w/ wavefront splitting & focusing mirror (2) dobule channel-cut monochromator

PS: pulse selector, DCCM: double channel-cut monochromator, TM: timing monitor

BL2 BL1 BL3 T. Ishikawa et al., J. Synchrotron Rad. 26, 333 (2019) S. Owada et al., J. Synchrotron Rad. 25, 282 (2018). K. Tono et al., New J. Phys. 12, 083035 (2013) EH3 **EH2** EH4a • KB mirrors (~1 µm FWHM) + ns or fs optical lasers • CRLs (>2 µm FWHM) + fs optical lasers • KB mirrors (~5 µm FWHM) + fs optical lasers

Experimental stations

(+ ellipsoidal / Wolter mirror(s) (sub µm))

 \rightarrow Mainly AMO, MAT & XNO experiments are carried out using a dedicated experimental chamber owned by users.

S. Owada et al., J. Synchrotron Rad. 25, 68 (2018); J. Synchrotron Rad. 26, 887 (2019). Y. Kubota et al., Appl. Phys. Lett. 117, 042405 (2020).

Nano-focusing branch

• Two-stage focusing system (~20 nm FWHM) underdeveloped H. Motoyama, H. Mimura, J. Phys. B Atom. Mol. Opt. Phys. 48, 234002 (2015).

 \rightarrow Mainly Biology experiments (SFX etc.) are carried out using standard experimental platforms (DAPHNIS etc.) K. Tono et al., J. Synchrotron Rad. 22, 532 (2015). \rightarrow *E. Nango'* s talk

EH4b

Long sample(@EH3)-to-detector distance (<10 m)

MAXIC-S (~100 nm FWHM @4 keV)

 \rightarrow Dedicated for CDI at 4 keV for biomolecules & nanoparticles

H. Yumoto et al., Nat. Commun. 13, 5300 (2022).

EH6

- CRLs (>2 µm FWHM) + High-power fs optical laser
- \rightarrow Dedicated for HED experiments

 \rightarrow Mainly fs-P&P measurements in various fields are carried out using advanced P&P instruments (timing monitor, DCCM etc.). T. Katayama *et al.*, *Struct. Dyn.* **3**, 034301 (2016); *J. Synchrotron Rad.* **26**, 333 (2019).

EH4c

• KB mirrors (~1 μ m FWHM) + fs optical laser (λ = 800 nm) H. Yumoto et al., Nat. Photon. 7, 43 (2013).

 \rightarrow Mainly XNO & HED experiments are carried out using advanced operation modes (two-color, self-seed, SDO etc)

 Advanced KB mirrors (sub 10 nm) J. Yamada et al., Nat. Photon. 18, 685 (2024)

EH5

 100exa KB mirrors (~100 nm FWHM) H. Yumoto et al., Appl. Sci. 10, 2611 (2020).

 \rightarrow Mainly XNO experiments are carried out using ultimately intense (~10²⁰ W/cm²) XFELs.

• KB mirrors (>500 nm FWHM) + High-power nanosecond laser

 \rightarrow Dedicated for HED experiments using a standard platform. Y. Inubushi et al., Appl. Sci. 10, 2224 (2020).

Advanced capabilities at BL3

Two-color XFEL (+ time delay)

- Eenergy separation: <30%
- Delay time: <300 fs @8 GeV
- Pulse energy: ~200 µJ total (balanced case)
- SASE + mono option available

T. Hara et al., Nat. Commun 4, 2919 (2013). H. Yoneda et al., Nature 524, 446 (2015). I. Inoue et al., Phys. Rev. Lett. 126, 117403 (2021). M. D. Doyle et al., Optica 10, 513 (2023).

XFEL-pump–XFEL probe

Reflection self-seeded XFEL

- Bandwidth $\Delta E/E$: ~3x10⁻⁴
- Photon energy: 8 ~ 12 keV
- Pulse energy: ~200 µJ w/o DCM

T. Osaka et al., J. Synchrotron Rad. 26, 1496 (2019). S. Matsumura et al., Opt. Express 28, 25706 (2020). I. Inoue et al., Phys. Rev. Lett. 127, 163903 (2021).

X-ray nonlinear spectroscopy

Split-and-Delay Optics (SDO)

- Delay time: <200 ps @10 keV
- Photon energy: 5 ~ 15 keV
- Pulse energy: ~4 µJ total (self-seeded)

T. Osaka et al., IUCrJ 4, 728 (2017). Y. Shinohara et al., Nat. Commun. 11, 6213 (2020). T. Osaka et al., Phys. Rev. Research 4, L012035 (2022).

Studies of spontaneous fluctuation

Phase retarder (+ timing monitor)

- Photon energy: 5 ~ 16 keV
- Degree of polarization: circular ~97% vertical ~67%

M. Suzuki et al., J. Synchrotron Rad. 21, 466 (2014). Y. Kubota et al., J. Synchrotron Rad. 26, 1139 (2019). K. Yamamoto et al., New J. Phys. 21, 123010 (2019).

TR studies of magnetism