
Breakout Session 1B:
Data acquisition and handling

Organized by Taito Osaka (SACLA)

This session aims to share the current capabilities of data
acquisition and handling at SACLA. Using Python-based
APIs developed at SACLA (dbpy, stpy, ippy, ecpy etc.),
users can design/code advanced data acquisition and
handling processes, which are not able to be
accomplished by standard tools officially supported by
SACLA. In addition to overview of these tools, the current
status and perspectives on data access environment from
your institutes will be presented. Then, some good
examples that realized efficient experiments by means of
those APIs will be introduced by leading users. Finally, we
will discuss how we can maximize scientific outcomes
from the view point of data acquisition / handling
capabilities.

Introduction (20-25 min, recorded and to be uploaded online)

“Efficient experiments at SACLA using Python APIs”

T. Osaka (SACLA)

Facility talk (10 min)

“Current status and perspectives on data access environment”

Y. Joti (SACLA)

Talks of leading users (15 min each)

“Efficient pump–probe experiments”

T. Sato (LCLS)

“Efficient nonlinear X-ray optics experiments”

Z. Abhari (U. Wisconsin–Madison)

Discussion (~10:30 am)

SACLA Users’ Meeting 2025

Chair: T. Osaka (SACLA)

Efficient experiments at SACLA
using Python APIs

Taito OSAKA
RIKEN SPring-8 Center

SACLA Users’ Meeting 2025
Breakout session 1B: Data acquisition and handling

4th March, 2025

Brief overflow of experiments at SACLA
１．Planning methods

& procedures
２．Measurements ３．Quick analysis

& visualization

• Prior researches
• Source / BL / detectors
• Remaining time
• Man power

• How to analyze / visualize
• Extract important info

Continue
（better statistics, more data points）

Minor change
（better S/N, new info）

Major change（new info, tests）

Objectives of this talk
１．Planning methods

& procedures
２．Measurements ３．Quick analysis

& visualization

① Introduce useful tools for data handling / analysis 
 (dbpy，stpy, ippy)

①

② Introduce useful tools for data acquisition 
 (ecpy, ‘semi-’automatic accelerator tuning)

②

※ For Python users

Useful tools for data handling/analysis
（DataAccessUserAPI_Python: dbpy，stpy）
(ImageProcessingUserAPI_Python: ippy)

Structure of SACLA data：“Tag” & “Run”
All the XFEL shots are identified by two numbers (“HighTag” & “Tag”)

20XX0Y Z
（20XX: FY，0Y: 01 or 02，Z: 32-bit unsigned integer）

When users store clusters of datasets (mainly for taking 2D images),
each cluster is identified by another number, “Run number”.

・・・

Tag#s 202501
1

202501
2

202501
3

202501
4

202501
5

202501
6

202501
103

202501
104

Run# 1 (100 shots)

0-D data (PD signals，motor position etc.)：all shots are automatically saved（SyncDB）
2-D images (MPCCD, Imperx, OPAL etc.)：only shots in each Run are saved（CacheStorage）

Data handling at SACLA

CacheStorage
(2-D images)

SyncDB
(0-D data)

SACLA HPC Users’ PCs

Calculation
nodes

job※

※Execute analysis codes 
 or 
“log-in” interactively

Call w/ “facility tools”

“DataConvert”（standard tool for data handling）

HDF5

Create HDF5 files in which
(pre-processed) 2-D images and 0-D data are contained.

Create accessible ‘files’ (easy to read & copy to other storages)
All the needed data could be contained in a single file
Readable by various softwares

Pros:

2-D images

PD signals

Motor positions

Cons:
Big file size 
（contains many data including unnecessary ones） 

Complicated configuration for selecting data saved in HDF5 files  
（in most cases, users should reset the configuration during or after BT） 

Multiple languages / tools necessary 
for creating files / reading / analyzing / & visualizing them 
(DataConvert is working on Shell, and the other processes need another tool） 

Long pre-processing time for MPCCDs with multiple sensors

Like to complete all the processes with one tool,
while saving time and file size !!

DataAccessUserAPI (dbpy, stpy)
Modules for handling SACLA data via Python

Able to get only specified data as NumPy Array 
（0-D data: dbpy，2-D images: stpy） 

Running on a variety of Python versions（2.7，3.6，3.7，3.8 confirmed） 

Advanced analysis & visualization possible with established Python modules 

Efficient & flexible coding on Jupyter notebook

Who recommended?

Unclear what info & how analyses are required 
（e.g., need data filtering with some 0-D data but unclear which works well） 

Analyses of a part of MPCCD sensors enough※ (as multi-sensor MPCCDs are used) 
（Assembling multi sensors into a single image takes long time） 

Like to reduce data size 
（only ‘necessary’ data are stored in files） 

Python experts ! 
（Only Python is needed）

※Even if you need assembled images,
 it is much more efficient to analyze individual sensor images,
 and finally assemble them with ‘ippy’

Example (Run info & 0-D data)

Useful for automatic data analysis & visualization
(able to start analyzes soon after the newest Run is completed)

- equipID (name of the signal in SyncDB)
- Run number (list of tags can be generated from the Run number)

Example (2-D images)

Averaged image of one of MPCCD Dual sensors
after dark subtraction

Histogram of adu values on individual pixels
(confirm adu value of a single X-ray photon)

- detectorID (name of the 2-D detector)
- Run number

1 photon in a pixel

2 photons

3 photons

4 photons

ImageProcessingUserAPI (ippy)
Module for processing MPCCD images via Python

ippy.reconstruction()
Correctly assemble individual sensor images

into a single image

References: SACLA HPC Portal

or (if you have an HPC account）
/home/osaka/examples/ExampleForDataAnalysisForPython

(.html or .ipynb)

Useful tool for data acquisition
（ExperimentControlAPI：ecpy※）
(‘Semi-’automatic accelerator tuning)

※ ecpy is operational only in OPCONs near hutches for safety
※ecpy is NOT fully opened for users (available after discussion with BL scientists)

RunControlGUI (standard tool for data acquisition)

All of what can be done by RunControlGUI (+α) is available with ecpy
（stage control, start & stop Runs, shutter control + setting Amp of PDs etc.）

→ Able to accomplish much more complicated procedures

Acquisition mode Shutter pattern 2-D detectors

Example: Control of complex system (Split-Delay Optics)

Beam splitter

Bragg mirror 1 Bragg mirror 2

Channel-cut crystals
Beam merger

Beam monitor

X-ray cameraDelay stage Delay stage

Beam monitor Beam monitor

Generate double FEL pulses with a tunable time delay.
To change a single parameter (time delay, photon energy etc.),

multiple stages must be controlled precisely.
Dedicated Python module (sdopy) was coded based on ecpy + dbpy　→　Easy control by users

Accelerator control
For safety, control of accelerator equipments is inhibited from BLs.

（Only the K value of ID1 is allowed to be controlled）

A useful system has been implemented for ‘semi-’automatic control of accelerator parameters:
time delay between two-color FEL pulses &
photon energy of self-seeded FELs etc.

Request operators
from PC

Confirmed
by eye

Inform completion
by hand

Confirmed
by PCShared text fileAccelerator operators Users

Users’ example: SASE FEL pump + mono FEL probe exp.
Sample alignment and taking reference (non-pumped) data w/ weak mono beam

→ Take pump-probe data w/ high-intensity FEL pulses

Upstream ID
(for mono)

Downstream ID
(for SASE)

Mono

Beam
monitor

Attenuator

KB Sample

① Move to fresh area in sample
② Stop pump FEL
③ Change gain of beam monitor
④ Insert attenuator
⑤ Rocking curve meas.
⑥ Move to the peak pos.
⑦ Take Run with multiple shots

⑧ Generate pump FEL
⑨ Change gain of beam monitor
⑩ Remove (or change) attenuator
⑪ Take a single-shot Run
⑫ Repeat ①~⑪
⑬ Change time delay
⑭ Repeat ①~⑬

Black : ecpy
Green：Acc. control
Blue ：Analysis by dbpy

Signal

“Non-official” Python modules (coded by me)

accpy:

fspy:

ccpy:

raster:

For ‘semi-’automatic control of accelerator parameters

For fast delay scans (based on T. Sato’s script)

For controlling double channel-cut monochromator

For raster scans of solid samples

Please find more details at

/xdaq/work/share/ecpy_share/
or

contact osaka@spring8.or.jp

In the end,,,

Most of what users want to do is possible via Python APIs at SACLA.
Open OnDemand should facilitate & encourage users to use them.

If you like to use ecpy,
please contact BL scientists as soon as possible.

(all users’ requests cannot be covered by facility, due to limited resources,,,)

Users’ inputs are always welcome !

Thank you for your attention

