Experimental platforms with high-power lasers at SACLA SACLA

Kohei MIYANISHI, Toshinori YABUUCHI, Keiichi SUEDA

SACLA

Summary

- Two distinct experimental platforms for combinative use of high-power nanosecond and femtosecond lasers with an XFEL are available at SACLA.
- The nanosecond laser platform is dedicated to exploring the states of dynamically compressed matter, utilizing X-ray diffraction, imaging, and small-angle scattering.
- The nanosecond laser with improved shot-to-shot stabilities has been open to users since FY2023, and further laser improvements are ongoing.
- Various techniques have been developed and demonstrated at SACLA to diagnose matter under high-energy-density states at the femtosecond laser platform.
- A newly developed in-vacuum sample changer for the femtosecond laser platform is expected to significantly improve the efficiency of experimental workflows.

Overview of two experimental platforms with high-power lasers

High-power nanosecond laser at EH5 on BL3

"Dynamic compression"

Pulse energy

Pulse duration

Rep. rate

Focusing optics

Advanced operation

SACLA - SPring-8 Experimental facility

High-power femtosecond laser at EH6 on BL2

~8]

800 nm

1Hz

4–22 keV

<10 fs

30 Hz

"High energy density science"

High-power nanosecond laser	
Pulse energy	>15 J on sample
Pulse shape	5 ns quasi-square
Spot size	140/180/260/470 um FWHM
Wavelength	532 nm
Rep. rate	0.1Hz
Shot rate	1 shot / 3–10 min.
XFEL (Beamline 3)	
Photon energy	4-22 keV
Band width, ΔΕ/Ε	Pink: ~3 x 10 ⁻³ Seeded: ~3 x 10 ⁻⁴

Monochromatic: 1.3 x 10⁻⁴

Pink: ~700 μJ @10keV

<10 fs

30 Hz

KB mirror

(Down to 0.5 μm from 600 μm

unfocused beam)

Self-seeding

Two color

Split-and-delay optics

Platform for dynamic compression with high-power nanosecond laser

The experimental chamber is designed for X-ray diffraction (XRD), X-ray imaging(XI), and small-angle X-ray scattering (SAXS)

Measurement examples

X-ray diffraction Dissociation of hydrocarbon implied by diamond formation [Update] The ns laser with improved shot-to-shot stabilities has been open to users since FY2023

Reflection geometry

20 Distance [µm]

G. Rigon, *Physical Review E*, 100(2), 021201 (2019). G. Rigon et. al., Nat. Commun. 12, 2679 (2021).

Further laser improvements are ongoing with Osaka University

Arbitrary wave generation up to 20 ns

- Currently, only a 5 ns square pulse is available for users' experiments.
- Future work will primarily focus on generating square pulses with extended durations and step pulses.
- Control of energy drift
 - The laser energy drifts by 10% in 48 hours due to thermal instability.
 - Our current objective is to establish energy drift control measures in FY2024.

Platform for High-energy density science with high-power femtosecond laser

4.5 ns square pulse

~15-25 J on targe

Basic instruments regularly monitor laser-matter interactions along with XFEL measurements

Various techniques have been developed and demonstrated at SACLA to diagnose matter under high-energy-density states

Grazing-Incidence Small-Angle X-ray Scattering (GISAXS) Fast surface deformation with nm, ps-scale resolution

[Update] A newly developed sample changer enables quick sample replacement without breaking the vacuum in the chamber

Sample position

L. Randolph, M. Nakatsutsumi et al., Phys. Rev. Res. 4, 033038 (2022)

X-ray imaging with near absorption edge

Fast isochoric heating (ionization) in matter

holding 5 plates

Sample plate stocker

- Sample replacement currently requires several hours due to vacuum pumping and the related realignment of the experimental system.
- An in-vacuum sample changer is anticipated to streamline experimental workflows significantly.
- The newly developed in-vacuum sample changer features a capacity for:
 - 20 sample plates stored within the in-side-the-chamber stocker.
 - 5 sample plates on the rotating disk (should be empty initially).
- The time required to replace a single sample plate is approximately 5 minutes. • The sample changer is projected to be operational in Fiscal Year 2024.

Currently, we can mount 6 plates in the chamber for a day's operation. Consequently, a capacity of 20 plates should suffice for a few days of data collection.