

Development of 20.2 Mpixel CITIUS detector for SACLA

Haruki Nishino^{1,2} on behalf of the CITIUS collaboration JASRI¹、RIKEN²

Email: haruki.nishino@spring8.or.jp

Abstract

A new X-ray imaging detector, CITIUS-20.2M, has been developed for Serial Femtosecond Crystallography (SFX) at SACLA. CITIUS-20.2M has a seven times higher peak signal, seven times smaller noise, and five times more pixels than the currently used detector MPCCD (Phase III). The total number of pixels will be the world's largest as a direct detector for XFEL. Our objective is to improve the spatial resolution of SFX with higher-Q measurements. The detector will be deployed in FY2024. Status of the development and the preparation for the deployment are presented in this poster.

CITIUS-20.2M detector

A new charge-integrating X-ray imaging detector, CITIUS, has been developed for high photon fluxes onto samples with upgraded synchrotron radiation facilities. The integration of CITIUS detectors into synchrotron radiation experiments are in progress at SPring-8.

In parallel, we are also developing another larger version, CITIUS-20.2M, with high spatial resolution for Serial Femtosecond Crystallography (SFX) at SACLA. CITIUS-20.2M will have the world's largest number of pixels as a direct X-ray detector for XFEL. In comparison with the current detector MPCCD (Phase-III) in operation, CITIUS-20.2M has a seven times higher peak signal, seven times smaller noise, and five times more pixels.

Architecture [1-3]

Integrating Pixel & High Frame Rate

Features

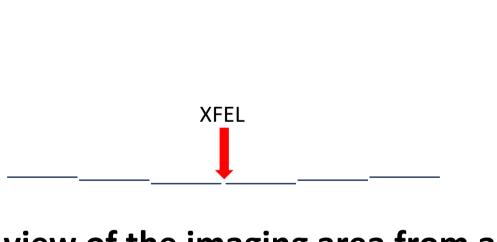
Ultralow Single Photon Spectro- High Spatial Systematic Sensitivity Imaging Resolution

- [1] SPring-8 II CDR (2014) with updated values.
- [2] T. Hatsui, presented at iWorid (June. 2014).[3] T. Hatsui, AOSFRR (Nov. 2015)

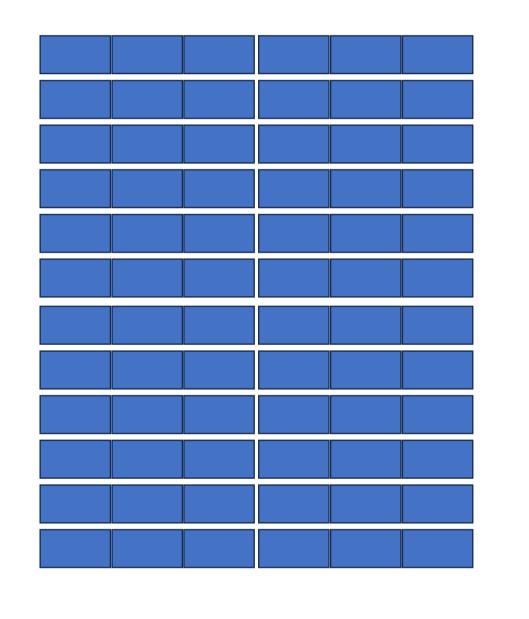
Specifications of CITIUS-20.2M and MPCCD (Phase-III) for SACLA

Parameters		Value		
		CITIUS for XFEL (SACLA)	MPCCD (Phase III)	unit
Sensor	Sensor Material	Silicon		N/A
	Thickness	650 x2	300	μm
	Pixel Size	72.6 ×1	50	μm
	Pixel Number	0.28 x 0.6	0.5	Mpixels/sensor
				module
	Peak Signal	17,000	2,400	phs/pixel@6 keV
	Typical noise	25 x<1	<u>7</u> 250	e-rms
	Frame Rate	60*	60	Hz
	Data Rate	1.6**	0.06	GB/s @ digital out
System	Imaging area	321×393	100×100	mm ²
	Pixel Number	20.2 ×	4	Mpixels
	Data Rate	107* x 24	0.48	GB/s @digital out

- * The frame rate of CITIUS is 17.4 kHz (SR variant) and 5 kHz (XFEL variant).
- ** The data rate of CITIUS is the total raw data rate from the sensor. Each frame data has 16 multi- AD sampled data.

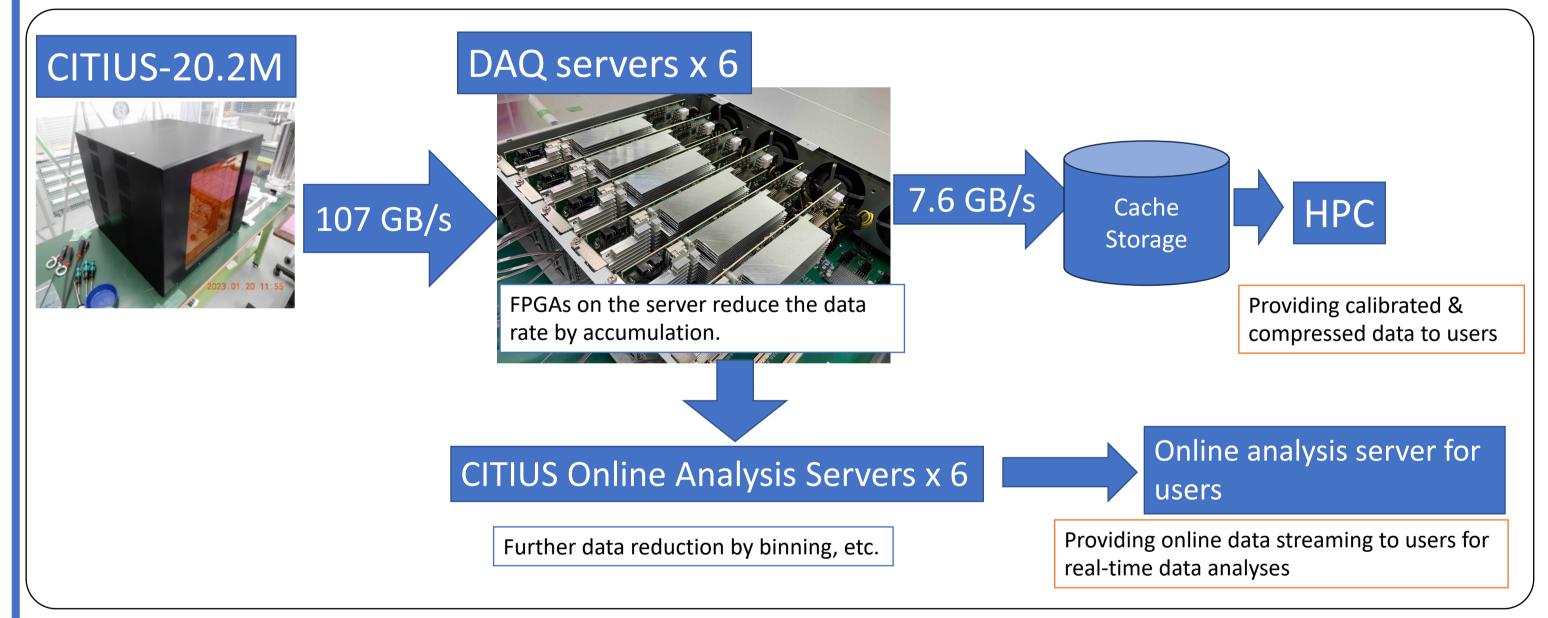

CITIUS-20.2M imaging area geometry

Error


High Dynamic

Range

The CITIUS sensor module has 0.28 Mpixels (384 x 728 pixels) and an imaging area of 28 x 52 mm². CITIUS-20.2M was built by tiling 72 sensor modules, as illustrated in the figures at the bottom and right.


Side view of the imaging area from above

Front view of the imaging area

Preparation of data acquisition system

CITIUS-20.2M generates orders of magnitude more data than the data rate of MPCCD. This amount requires dedicated computers for data acquisition and data processing. The new computing system will have an analysis environment similar to the one currently used for SFX experiments with MPCCD environments for SACLA users, by reducing the huge amounts of data

Timeline for deployment

- FY2022: Feasibility study with CITIUS-560k
- FY2023: 20.2M camera assembly and the installation of data acquisition system
- FY2024: Installation of CITIUS-20.2M at SACLA on BL2 EH3

Outline of CITIUS-20.2M data flow

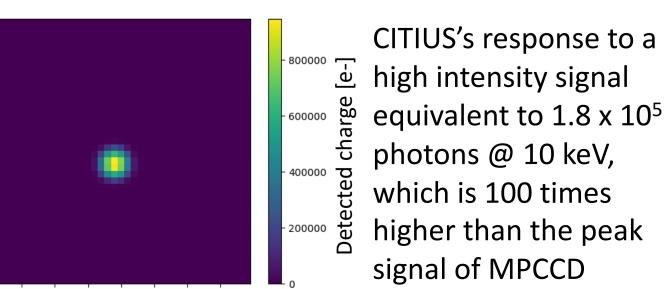
Data acquisition computers for CITIUS-20.2M installed in the server room of SACLA

Preparation Status

The data acquisition computers for CITIUS-20.2M have started running in the server room of SACLA since the winter shutdown period.

Data processing testing started by generating dummy data simulating the data rate of CITIUS-20.2M.

We will start integration testing early next FY when CITIUS-20.2M is installed at BL2EH3 of SACLA.


Feasibility Study with CITIUS-560k

The first beamtime at SACLA, using CITIUS-560k, has been conducted in December 2022 and the response of CITIUS to XFEL beam conditions has been measured.

The successful DAQ integration to RunControl of SACLA, the lower noise, higher dynamic range, and linearity have been confirmed.

CITIUS has better energy resolution than MPCCD from the fluorescence measurements: • Target: Mn • Beam Energy 10 keV • E resolution: 253 eV (FWHM)

Response to a high intensity signal

We did not observe any blooming, which was a wide charge spread over surrounding pixels observed with MPCCD.

Summary

- CITIUS-20.2M is the world's largest direct X-ray detector developed with high spatial resolution of SFX at SACLA.
- The sensor of CITIUS detectors has been confirmed to work as expected for XFEL. CITIUS-20.2M is now under assembly and the data acquisition computers are in preparation.
- CITIUS-20.2M will be installed in FY2024. After the verification of CITIUS-20.2M through test experiments, the detector will be provided for users' experiments.

Acknowledgement

本開発の実施にあたり、以下の方々、協力会社(敬称略)からの協力・支援を頂きました。心より感謝申し上げます。 理研・JASRIのチーム関係者(阿部 利徳, 東末 敏明, 工藤 統吾, 亀島 敬, 稲垣 康彦, 藤原 邦弘, 中川 敏治, 親木 康高, 木本 學, 中町 将貴、 株式会社キャンドックスシステムズ、グローリーメカトロニクス株式会社、グローリーシステムクリエイト株式会社、株式会社日本技術センター、明 星電気株式会社、JEPICO Corporation)、松田 祐二(理研(現 株式会社ミスト)、寺西 信一, 渡邊 健夫, 木下 博雄(兵庫県立大学)、ソニーセミコ ンダクタソリューションズ株式会社、東京エレクトロンデバイス株式会社、香村 芳樹, 玉作 賢治, 矢橋 牧名, 石川 哲也(理研)、関澤 央輝, 安田 伸広, 杉本 邦久, 宇留賀 朋哉, および検出器利用支援WGの皆様(JASRI)、髙橋幸生(東北大学)、SACLA BL研究員の皆様