SACLA Users' Meeting 2023 March 2–3, 2023

Technical Updates: Hard X-ray Beamlines (BL2/3)

Caito OSAKA RIKEN SPring-8 Center osaka@spring8.or.jp on behalf of SACLA

Technical Updates at BL2/BL3

Diagnostics / Acc. Tuning

Middle-resolution inline spectrometer (BL2/BL3)

→ Tailor-made XFEL generation w/ ML-based acc. optimizer

Advanced Operation

- Two-color XFELs with SASE + mono (BL3)
 - → Nonlinear spectroscopy / X pump & X probe w/ high sensitivity

Beamline Instruments

- Ru-coated beam transport mirrors (BL2/BL3)
 - → High-resolution crystallography w/ high-E XFEL
- Various options for channel-cut monochromator (BL2/BL3)
 - → Optimization of XFEL bandwidth for specific experiments

Portable nano-focusing system (BL2/BL3)

→ Flexible experiments w/ nano-focused XFEL

2/ 10

Middle-Resolution Inline Spectrometer (BL2/3) 3/ 10

Narrow Debye-Scherrer rings from micro crystals (diamond, silicon etc.) are detected.

Easy to use (insert the capillary & adjust the detector angle)
 Middle resolution (several eV); cf., 30–40 eV for nano-crystal I-spec
 Destructive (thick capillary used to make Debye-Scherrer rings uniform)

Installed in optics hutches at both BL2 & BL3 in 2022

Advanced diagnostic systems have enabled *tailor-made XFEL generation* w/ ML-based acc. optimizer.

Parameters:

- Pulse energy
- Sandwidth (both narrow & broad)
- Spectral brightness
- Central photon energy
- Beam size/shape and so on...
- Weighted score of several param.
 Manual examination (not tried)

Example:

Maximizing *spectral brightness* while keeping *pulse energy* I. Inoue et al., JSR <u>29</u>, 862 (2022) E. Iwai et al., in preparation

Please contact beamline scientists & let us know your specific requirement

Two-color SASE & mono XFELs (BL3)

μCC mono enables unique operation mode that generates two-color SASE (pump) & mono (probe) XFELs w/ energy- & delay-scan capabilities. Nonlinear spectroscopy & sensitive probe of matter excited by SASE

5/ 10

Ru-Coated Beam Transport Mirrors (BL2)

High energy XFEL (*up to 22 keV*) became available at BL2 since 2022B. *Useful for high-resolution (<Å) crystallography*

Taito OSAKA, RIKEN SPring-8 Center

SACLA Users' Meeting 2023: Technical Updates

6/ 10

Channel-cut monochromators (BL2/BL3)

Si(111) double channel-cut monochromator (DCCM) has been routinely utilized for ultrafast optical & XFEL pump-probe experiments at BL3.

T. Katayama et al., JSR <u>26</u>, 333 (2019).

7/ 10

Various high-quality CCs will be available from 2023A → *optimization of XFEL bandwidth* for *advanced spectroscopy (narrow b.w.)* & *diffraction experiments (moderate b.w.)*

Crystal	Plane	θ _{B_min} (deg)	θ _{B_max} (deg)	gap (mm)	Plasma polish	# of sets	Comments
Si	(111)	5.4	38.6	8	done	1	default (111)
Si	(111)	20.0	63.4	20	done	1	(111) at low energy (333) or (444)
Si	(111)	10.8	58.0	10	in FY2022	1	(333) or (444)
Si	(110)]]]]	//	partly done	1	(220) or (440)
Si	(100)]]]]	11	in FY2022	1	(400)
Si	(311)	11]]	//	done	1	(311)
Si	(331)	//]]]]	in FY2022	1	(331)
Ge	(111)	4.6	25.6	1.2	under commissioning	1	<pre>(111) w/ ∠E/E = 3.0x10⁻⁴ CCM option available higher flux than Si(111)</pre>

List of currently available CCs

These CCs are available both at BL2 (in air) & BL3 (in-vacuum dedicated chamber)

Taito OSAKA, RIKEN SPring-8 Center

SACLA Users' Meeting 2023: Technical Updates

Compact Ge(111) CCM

Portable Nano-Focusing System (BL2/BL3)

Y. Inubushi et al., in preparation

9/ 10

Portable nano-focusing mirror + auto-tuning system is under commissioning. Flexible experiments with nano-focused XFEL

(w/ fs optical laser, large detector, bring-in instruments, etc.)

Easy assembly

Easy alignment (2 hours initial, ~10 min retuning)

Markov Reliable performance

(auto-tuning based on wavefront sensing)

→ Talk by J. Yamada (Osaka U) from 3:15pm, today

Flexible design of mirrors (AKB etc.)
 Easy implementation (w/o dedicated chamber)

Operated in air or He

Current performance

360 nm (V) × 240 nm (H) FWHM

→ ~2×10¹⁹ W/cm² (in air @9 keV, up to ~11.5 keV)

Taito OSAKA, RIKEN SPring-8 Center

SACLA Users' Meeting 2023: Technical Updates

Summary: Updated Capabilities in HX BLs

		BL2 (HX)	BL3 (HX)
Photon e	energy	4 ~ 22 keV	4 ~ 22 keV
Pulse du	iration	<10 fs	<10 fs
	Bandwidth (ΔE/E)	~3x10-3	~3x10-3
Pink beam	Pulse energy	∼500 µJ @10 keV	~700 μJ (up to 900 μJ) @10 keV
Acception become	Bandwidth (ΔE/E)	1.3x10-4	1.3x10-4
(Si 111 DCM/DCCM)	Pulse energy	∼10 µJ @10 keV	~10–50 µJ @10 keV
Monochromatic beam	Bandwidth (ΔE/E)	0.05–1.3×10-4 @10 keV (in air)	0.05–3.0x10 -4 @10 keV
	Pulse energy	depends on b.w.	depends on b.w.
Repetitic	on rate	30 / 60 Hz	30 / 60 Hz
Advanced oper	ation modes	Two color (SASE+SASE w/o delay)	Two color (SASE+SASE / SASE+mono) Self-seeding / SDO
Tailor-made XF	EL generation	0	0
Portable nano-fo	cusing system	to be available	to be available

Thank you for your kind attention !

10/ 10

SACLA Users' Meeting 2023: Technical Updates