Specification and operation details of 100 nm & sub-10 nm focusing system at SACLA

Jumpei Yamada (SACLA)

Nanofocusing system at SACLA

Topics1: 100exa system

100-200 nm focusing @ 6-12keV (100exa)

SACLA User's meeting 2022

SACLF

100exa focusing system

XFEL 100-200 nm focusing with 10²⁰ W/cm² (=100EW/cm²)

Drs. Ohashi-san, Yumoto-san (JASRI)

0.4

0.3

0.2

0.1

0

-1.0

Counts (arb. unit)

H. Yumoto et al., Appl. Sci. (2020)

2.5

3.0

100exa focusing system

XFEL 100-200 nm focusing with 10²⁰ W/cm² (=100EW/cm²)

Specification

Photon energy :	<12 keV
Reflectivity :	>80 % @ 12keV
Acceptance:	~1 x 1 mm (cf. incident ~550 um fwhm)
Throughput:	>25% (including all BL-optics)
Sample type:	Solid (foil), liquid jet, gas, etc.
Sample type:	Solid (foil), liquid jet, gas, etc.

Focus size: ~100 nm x ~200 nm Depth of focus: ~65 um

Tuning time:4~5 hours (initial tuning)2~3 hours (re-focusing)Lifetime of focus:~12 hours

<u>Issues</u>

The measurements have been restricted by re-focusing ~3h of interruption every 10~12h.

Re-focusing was just try-errors of wire-scanning

- $\stackrel{{}_{-}}{}$ Less quantitative
- L(BL staffs were exhausted...)

Focal

Automated optimization of 100exa: nanofocusing KB via wavefront measurement

Yamada

Automated optimization of 100exa: nanofocusing KB via wavefront measurement

Performance Test @ 9.07 keV SASE

2~10 min auto-refocusing is available by users themselves.
The wavefront was consistent with the knife-edge scan.

From SACLA side:

We recommend to use the grating-based auto-tuning system. If acceptable, convenient & effective nanofocused XFEL will be available.

Requirement: Make space for the grating

Sub-10 nm focusing @ 9.1keV

SACLA

Sub-10 nm focusing system

XFEL 7 nm focusing with 10²² W/cm² intensity

AFEL / nm focusing with IU w/cm- intensity		V_ell			
			H_hyp:	:L 226.38	
<u>Specification</u>		V_hyp: L 118.0	1 233.0		
Photon energy :	9.124 keV (w/ multilayer b.w. 200eV)				and and a second
Reflectivity:	39.6 %				21.38
Acceptance:	<code>~500 x 500 μm (cf. incident ~380 um fwhm)</code>			the second	
Throughput:	>15% (including all BL-optics)			119.97	
Sample type:	Solid		Hype convex	arbolic mirrors	Elliptical concave mirrors
1 /1		Side view			
Focus size:	6.6 nm x 7.1 nm	Source 💦			- Sure
Depth of focus:	2 um		the second se		- Ai
		Top view			
Tuning time:	currently ~12 hours (initial tuning) ~10 min by grating (re-focusing)	*			
Lifetime of focus:	>10 hours	146.0 m		566.5 mm	233.4
		146.	≽;∢ 305 m		416.8 mm

Issues & question

Is the focus truly sub-10 nm? How to manage the narrow DoF of 2µm? What science will open up?

Focus

7.94

Focus

77.6 mm

W.D. 43.1 .

H_ell :L 69.32

SACLA User's meeting 2022

SAC

Focus characterization of sub-10 nm XFEL

For the sub-10 nm XFEL beam, wire-scanning method is not realistic.

☑ Focus & samples vibration of ~20 nm

SACLI

Focus characterization of sub-10 nm XFEL

Wavefront measurement by grating interferometer (75 shot-average) **3um-pitch grating** Camera-length 0.45m Focus-grating 8.4 mm 120 um defocus 1/4 Wavefront error (wave) Wavefront error 6.7x7.0 nm fwhm

SACLF

s-GI & ptycho. consistently indicated 7nm focus size

J. Yamada

Single-shot wavefront measurement

30Hz image acquisition by IMPERX-CMOS

courtesy of SACLA Eng. team

Single-shot characterization revealed almost stable wavefronts

Near-field ptycho. w/ orthogonal probe relaxation

OPR: Orthogonal probe relaxation Lindividual probes for each of diffraction

can be reconstructed

M. Odstrcil *et al.*, Opt. Express (2016). S. Sala *et al.*, J. Appl. Cryst. (2020).

How to manage the narrow DoF of $2\mu m$

- \checkmark The sample should be placed within a depth of focus of 2um
- -> Sample tuner to tighten the film

- ①Set a film
- 2clamp&hold
- ③Raise center stage& apply tension

④Put the holder& glue the film

Example of tightened film

14

How to manage the narrow DoF of $2\mu m$

 \blacksquare The sample should be placed within a depth of focus of 2um

-> Tune the sample rotation using sample monitor (optical interferometer)

The sample (tightened film) surface can be kept at the same position within $1^{2} \mu m$.

16

Pulse energy on mirrors : 255 μ J **Expected Intensity/fluence**

 $255\mu J \times 40\%$ reflectivity $\times 47\%$ Power in fwhm / $7x7nm^2$ / $7fs \approx 1.21 \times 10^{22}$ W/cm²

 3.27×10^{10} photons/shot => 5.83×10^{22} photons/cm²

Targets of the sub-10 nm XFEL (tentative)

K. J. Gaffney & H. N. Chapman Science. (2007)

✓ Nonlinear interaction

Signals $\propto \sigma \cdot I^{2\sim3}$ New phenomena of X-ray nonlinear optics

single-shot phase imaging

SACLA User's meeting 2022

From SACLA side:

7x7 nm focusing system has been developed. In solid sample case, 2-μm depth-of-focus is sufficient for practical use. We believe that the sub-10 XFEL will open up unique & new science

On behalf of the XFEL sub-10nm developing teams (Osaka U., JASRI, RIKEN)

Contact: yamada@spring8.or.jp