SACLA Users' Meeting 2022, March 2-3, 2022

Diffraction-limited resolution scintillator detector

Takashi Kameshima and Takaki Hatsui SACLA E-mail: kameshima@spring8.or.jp

Diffraction-limited resolution scintillator detector

LuAG:Ce transparent ceramic scintillator

X-ray imaging unit specifications

Unit type		Standard unit			Off-axis unit				
Scintillator		LuAG:Ce/LuAG transparent ceramic composite with dielectric multilayer coatings							
		YAG:Ce/YAG transparent ceramic composite with dielectric multilayer coatings							
Scintillator size		Φ10, 5 μm-thick							
		Φ10, 15 μm-thick							
Support substrate size		Φ12.5, 1 mm-thick							
Emission wavelength		450 ~ 700 nm (520 nm peak)							
decay time		~ 40 ns							
Image circle		Φ21.4							
Camera mount		C-mount							
Objective		2x, 5x, 10x, 20x, 20xHR, 50x, 100x				2x, 5x, 10x, 20x			
X-ray quantum efficiency		5 µm-thick LuAG:Ce scintillator			15 µm-thick LuAG:Ce scintillator				
		36 % for 10 keV			74 % for 10 keV				
		11 % for 20 keV			30 % for 20 keV				
		4 % for 30 keV			12 % for 30 keV				
Optics protection from X-ray		Attenuation in the support substrate 10 ⁻⁴⁰ for 10 keV, 10 ⁻¹¹ for 20 keV, 10 ⁻⁴ for 30 keV			Optical system to evacuate all lenses from X-ray optical axis				
<u>Standard ı</u>	unit optical c	<u>onfigurati</u>	on						
	Magnification	100x	50x	20xHR	20x	10x	5x	2x	
	NA	0.85	0.7	0.7	0.45	0.3	0.15	0.06	
	FOV	Ф0.214	Ф0.428	Ф1.07	Ф1.07	Ф2.14	Ф4.28	Ф10.7	
	Conversion*1	15 photons	10 photons	10 photons	4 photons	1.7 photons	0.4 photons	0.07 photons	
Old .	Scintillator	5 µm	5 µm	5 µm	5 µm	15 µm	15 µm	15 µm	

Fig. 1 (a) Fabrication process of thin-film transparent ceramic scintillators (b) 5 µm-thick LuAG:Ce scintillator formed on the 1mm-thick non-doped LuAG (c) SEM image of LuAG:Ce/LuAG composite at region of the bonding interface (d) Distortion map of 5-µm-thick LuAG:Ce scintillator (e) Quantum efficiencies of LuAG and YAG

Tab. 1 Comparison between LuAG:Ce and YAG:Ce

LuAG:Ce	YAG:Ce
42 %	8 %
~10 ⁻⁴⁰	~10 ⁻⁷
16,000	20,000
	LuAG:Ce 42 % ~10 ⁻⁴⁰ 16,000

Off-axis unit optical configuration

	Magnification	20x	10x	5x	2x
	NA	0.45	0.3	0.14	0.055
	FOV	Ф1.07	Φ2.14	Ф4.28	Ф10.7
	Conversion*1	4 photons	1.7 photons	0.4 photons	0.07 photons
	Scintillator	5 µm	15 µm	15 µm	15 µm

*1Typical conversion & transfer efficiency for single X-ray photon with 10 keV. X-ray quantum efficiency in the scintillator and quantum efficiency of the image sensor are not included.

To achieve diffraction-limited resolution, we have developed a thin-film transparent scintillator fabricated by solid-state diffusion bonding of ceramics. The scintillator film directly bonded on the support substrate has quasi-homogenious refractive index and low distortion. The mm-thick support substrate formed by non-doped LuAG layer strongly attenuates X-ray intensity down to ~10⁻⁴⁰ at 10 keV and suppresses lens browning in the imaging unit. These features enable quasi-diffraction-limited spatial resolution and non-damage imaging optics operation. Two variants of X-ray imaging units equipped with the developed thin-film scintillators are deployed. A standard unit provides full-range magnification (100x ~ 2x). The maximum NA configuration of 0.85 can achieve a resolving power of 200 nm L&S visualization. Off-axis unit is designed for high energy X-ray measurement (>30 keV) by keeping objective lens off an X-ray optical axis and for detection plane insertion to narrow space (depth size of 27 mm). The magnifications of 2x ~ 20x are available.

thickness in the inner layer of VLSI circuit were successfully detected and visualized.

We are planning to develop a largeformat X-ray imaging detector to enhance a field of view, implementing the SONY IMX411 image sensor. The prototype imaging unit has successfully visualized 1.2 µm L&S pattern in the center and the

Summary

Quasi-diffraction-limited spatial resolution is achieved by the transparent thin-film LuAG:Ce scintillator development. The 200 nm line-and-space structure was successfully visualized. The indirect imaging detectors equipped with this scintillators are deployed to SACLA experiments and high resolution beam monitors. Various optical configuration are selectable for the resolution range of 0.2 ~ 2.6 µm L&S. For the upgrade plans, the field of view is ~ 20 times enhanced by implementing the large format image sensor. The prototype imaging unit show the performance to resolve 1.2 µm L&S patterns in the center and the corner of FOV with $15.4 \times 11.4 \text{ mm}^2$.