

Standard Instrument for Serial Femtosecond Crystallography (SFX)

Kensuke Tono, Shigeki Owada, and Yasumasa Joti (on behalf of SACLA)

Serial femtosecond crystallography (SFX) is a method which allows users to analyze radiation-damage-free structures of micrometer- or submicrometer-scale crystals at room temperature. This method has a high compatibility with pump & probe measurement for studying fast dynamics. SACLA offers users an experimental platform for SFX, Diverse Application Platform for Hard X-ray Diffraction in SACLA (DAPHNIS). Users can select a variety of sample injectors according to their samples. This instrument is capable of pump & probe measurement with nanosecond or femtosecond optical lasers.

Diverse Application Platform for Hard X-ray diffraction in SACLA (DAPHNIS)

DAPHNIS

Applications

Sample injectors

Liquid-jet injector with a gas dynamic virtual nozzle (GDVN)

High-viscosity

, device

sample-injection

Droplet injector

DAPHNIS	Value/option	Remark	
Standard detector	4M-pixel MPCCD ¹⁾ (Phase III type)	Rayonix MX300-HS (10 Hz) is also available.	
Frame rate	30 fps		
Standard camera distance	50 mm		
Active area of the detector	110 mm x 110 mm	8 sensor panels	
chievable resolution	0.15 nm at 10 keV	On the detector edge	
	High-viscosity sample- injection device ²⁾		
Injector	Liquid-jet injector		
	Droplet injector ³⁾		
Typical hit rate	20-30%		
Typical index rate	60-70% of hit images		
Typical number of images to obtain a	~1x10 ⁴	For static structures	
complete dataset plecular replacement)	~2x10 ⁴	For pump & probe measurement	
	fs OPA (BL3 EH2)	Wavelength tunable	
tical laser for pump & probe measurement	ns Nd:YAG (BL2 EH3)	λ = 532 nm	
	ns OPO (BL2 EH3)	Wavelength tunable	

¹⁾ T. Kameshima et al., Rev. Sci. Instrum. **85**, 033110 (2014);.
 ²⁾ Y. Shimazu et al., J. Appl. Cryst. **52**, 1280 (2019).
 ³⁾ F. Mafuné et al., Acta Cryst. D**72**, 520 (2016).

Damage-free structure analysis

- Precise structures of micrometer or sub-micrometer crystals.
- Applicable even to crystals that are vulnerable to radiation damage.
- Major application: Protein crystals at room temperature.

Protein-ligand complexes being

High-resolution structures of small molecules

Pump & probe measurement

- Nanosecond or femtosecond laser pulses excite samples (pump). XFEL pulses are used to take diffraction patterns of the samples at
- transient states (probe).
 - Wide delay-time range from femtoseconds to milliseconds (or longer).

(m

optical fibers (optional)

Timing monitor available (BL3)

Application: Taking a molecular movie of bacteriorhodopsin

Γ	16 _i ns	744 ns	36 µs	1.7 ms	
	Start	-	k 📥 ~~		- Sign
	2~223	5 7 2-85	3 22	23	27523
			3 3	33	22333
	358-	353	3 33	\$3	35.83
	Z-S-S-	5 25	\$2 24	757	Z-957
	16 m	760 100	O 36.2 µs	0	725 µs

E. Nango et al., Science 354, 1552 (2016).

	Ti:sapphire with OPA	Nd:YAG	OPO	
Wavelength	200 - 2000 nm	532 nm	300 - 2600 nm	
Pulse duration <40 fs (800 nm), ~70 fs (VIS/NIR)		~5 ns	~5 ns	
Repetition rate	≤ 60 Hz	≤15 Hz	≤ 30 Hz	
Pulse energy	<10 mJ (800 nm) < 1 mJ (VIS)	<10 mJ < 30 µJ ¹⁾	<1 mJ <30 µJ ¹⁾	
Typical spot size at sample	∼150 µm (FWHM, Gaussian)	~80 µm ²⁾ (FWHM, Gaussian ³⁾)	~150 µm ²⁾ (FWHM, Gaussian ³⁾)	
		40 - 250 µm ⁴⁾ (through an optical fiber)	40 - 250 μm ⁴⁾ (through an optical fiber)	
Experimental hutch	BL3 EH2	BL2 EH3	BL2 EH3	
Remark		 For optical-fiber option. Using plano-convex lens Optional: Top-hat beam profile Dependent on the fiber core size 		