

Standard Instrument for Serial Femtosecond Crystallography (SFX)

Kensuke Tono, Shigeki Owada, and Yasumasa Joti (on behalf of SACLA)

Serial femtosecond crystallography (SFX) is a method which allows users to analyze radiation-damage-free structures of micrometer- or submicrometer-scale crystals at room temperature. This method has a high compatibility with pump & probe measurement for studying fast dynamics. SACLA offers users an experimental platform for SFX, Diverse Application Platform for Hard X-ray Diffraction in SACLA (DAPHNIS). Users can select a variety of sample injectors according to their samples. This instrument is capable of pump & probe measurement with nanosecond or femtosecond optical lasers.

Diverse Application Platform for Hard X-ray diffraction in SACLA (DAPHNIS)

SFX Injector	Applications	Applications		Value/option	Remark
Micro crystals	Protein P&P crystallography crystallography	Powder diffraction	Standard detector	4M-pixel MPCCD ¹⁾ (Phase III type)	Rayonix MX300-HS (10 Hz) is also available.
	Crystals		Frame rate	30 fps	
	Pump Laser		Standard camera distance	50 mm	

XFEL Data a	nalvsis		Active area of the detector	110 mm x 110 mm 0.15 nm at 10 keV	8 sensor panels On the detector edge
	Iniector	High-viscosity sample- injection device ²⁾			
				Liquid-jet injector ³⁾	
DAPHNIS	Sample injectors		Typical hit rate	20-30%	
<image/>	High-viscosity Liquid-jet injector with sample-injection a gas dynamic virtual	<section-header></section-header>	Typical index rate	60-70% of hit images	
	device nozzle (GDVN)		Typical number of images to obtain a complete dataset (molecular replacement)	~1x10 ⁴	For static structures
	Capillary			~2x10 ⁴	For pump & probe measurement
	Crystals in high- viscosity fluid		Optical laser for pump & probe measurement	fs OPA (BL3 EH2)	Wavelength tunable
				ns Nd:YAG (BL2 EH3)	λ = 532 nm
				ns OPO (BL2 EH3)	Wavelength tunable
K. Tono et al., J. Synchrotron Rad. 22 , 532 (2015). M. Kubo et al., J. Synchrotron Rad. 24 , 1086 (2017).			 ¹⁾ T. Kameshima et al., Rev. Sci. ²⁾ Y. Shimazu et al., J. Appl. Crys ³⁾ F. Mafuné et al., Acta Cryst. D 	Instrum. 85 , 033110 (2014);. st. 52 , 1280 (2019). 9 72 , 520 (2016).	

Damage-free structure analysis

- Precise structures of micrometer or sub-micrometer crystals.
- Applicable even to crystals that are vulnerable to radiation damage.
- Major application: Protein crystals at room temperature.

Application

Protein-ligand complexes being close to physiological conditions

High-resolution analysis at room temperature

Pump & probe measurement

- Nanosecond or femtosecond laser pulses excite samples (pump).
- XFEL pulses are used to take diffraction patterns of the samples at transient states (probe).
- Wide delay-time range from femtoseconds to milliseconds (or longer).

Femtosecond-laser excitation

Double-side excitation is possible using optical fibers (optional)

Near collinear excitation. Timing monitor available (BL3).

Application: Taking a molecular movie of bacteriorhodopsin

Thermolysin-ligand complex

Cryogenic condition

(synchrotron radiation)

Room temperature (XFEL)

H. Naitow et al., Acta Cryst. D73, 702 (2017).

Interatomic distances were determined at a resolution of 1.2 Å. Hydrogen atoms (marked in red) are distinguishable.

Structure around the active site

Water molecules (W46, W123, W132) are discernible.

T. Masuda et al., Sci. Rep. 7, 45604 (2017).

E. Nango et al., Science 354, 1552 (2016).

Pump lasers

	Ti:sapphire with OPA	Nd:YAG	OPO	
Wavelength	200 - 2000 nm	532 nm	300 - 2600 nm	
Pulse duration	<40 fs (800 nm), ~70 fs (VIS/NIR)	~5 ns	~5 ns	
Repetition rate	≤ 60 Hz	≤15 Hz	≤ 30 Hz	
Pulse energy	<10 mJ (800 nm) < 1 mJ (VIS)	<10 mJ < 30 µJ ¹⁾	<1 mJ <30 µJ ¹⁾	
Typical spot size at sample	~150 µm (FWHM, Gaussian)	~80 μm ²⁾ (FWHM, Gaussian ³⁾) 40 - 250 μm ⁴⁾ (through an optical fiber)	~150 μm ²⁾ (FWHM, Gaussian ³⁾) 40 - 250 μm ⁴⁾ (through an optical fiber)	
Experimental hutch	BL3 EH2	BL2 EH3	BL2 EH3	
Remark		 ¹⁾ For optical-fiber option. ²⁾ Using plano-convex lens ³⁾ Optional: Top-hat beam profile ⁴⁾ Dependent on the fiber core size 		