Breakout session B1: hard X-ray beamlines (BL2/BL3)

"Short- and long-term requirements from users for hard X-ray beamlines"

Chairs: Y. Nishino (Hokkaido U) & I. Inoue (SACLA)

Facility talk (I. Inoue & T. Inagaki):

•Machine-learning based tuning & tailor-made XFELs (under development)

Ideas for future machine upgrades

(THz acceleration, short pulse option, dielectric RF cavity etc.)

Inputs from user communities

Chemistry:	S. Nozawa (KEK)
Biological imaging:	A. Suzuki (Hokkaido U)
Protein crystallography:	S. Iwata (Kyoto U)
High energy density science	N. Ozaki (Osaka U)
Solid-state physics:	R. Fukaya (KEK)
Nonlinear optics:	K. Tamasaku (RIKEN)

Round table discussion

•Urgent requests from users -> facility plan for meeting the requests

- •Photon parameters that should be included for tailor-made XFELs
- Requests from users for long-term facility developments

Slides of the facility talk and the round table discussion will be uploaded website soon after the meeting.

Urgent requests pointed by speakers

Improve BL2 performance (Bio imaging)

•Decoupling operations of BL2 and BL3 by new Q-magnets. -> ~2022

•(Tentative solution): matching photon energies of BL2 and BL3 by careful scheduling of the beam time.

Reproducible beam performance (Bio imaging, NL), Stable two-color operation (NL)

•Machine learning-based accelerator tuning -> ~2021.

Improve pulse energy after mono (Condensed matter)

•Self-seeding (applicable to 8 keV or more) can increase spectral brightness by a factor of 4-8.

-> Expanding photon energy range to lower side is on-going.

Stable direct beam profile for imaging (HEDS)

•Machine learning-based accelerator tuning -> within 2021.

•(Other solution): reducing number of operating undulators can suppress

contaminations of higher order transverse modes -> please ask beamline staffs for the details.

Broadband beam (HEDS, Ultrafast Chem)

•Technically possible by detuning undulators. FYI, we have an experience of generating XFELs with bandwidth of 150 eV.

•60-Hz operation (PX), 12-hour shift (NL)

•Possible. Please specify your requests in the proposal.

Higher pulse energy @high photon energy (13-15 keV) at BL2 (PX)

•Please consider the use of BL3 for the experiments that requires high photon energy with high pulse energy (> 300 uJ).

Idea from Tamasaku-san for 120 Hz-operation at the cost of decrease in electron beam energy (~4 GeV, i.e. photon energy of ~5 keV)

•SACLA team will start discussions for checking the feasibility.

Photon parameters for tailor-made XFELs

Tunable Parameters

- 1. Pulse energy
- 2. Spectral width
- 3. Beam size
- 4. Pointing stability

5. Output of beamline instruments (e.g. Photo diode signal, MPCCD signal)

6. Functions using 1-5e.g. spectral density=(1)÷(2)

critical photon parameters

•500 µJ@BL2 (Bio imaging)

•Stability of central beam position (HEDS)

Questions from facility

•Any other parameters we should optimize?

•Are there critical photon parameters in each science case?

Other parameters should be included

- Intensity ratio between two-colors (Nonlinear)
- •Bandwidth of seeded beam (without mono)
- •Shot-by-shot fluctuation of pulse energy

Requests for long-term developments

	Photon energy	Pulse energy	Duration (FWHM)	Rep. rate	Comments
Biological imaging (CDI)	- (satisfied with the present parameter)	1st priority 2.5 mJ for demo experiment 7.5 mJ for single-shot imaging	longer durations (~10 fs) are acceptable	<mark>2 nd</mark> ~300 Hz	
РХ	_	1st Comparable to the LCLS (~4 mJ)	_	2nd 1 kHz 1 MHz (mix and inject SFX)	
Ultrafast chemistry	2.8 keV (L-edge) -25.5 keV (K-edge) (resonance of period 5 elements)	2nd present value ×10		<mark>1st</mark> photon flux ×100- 1000	Need to improve instrumentation resolution before shortening pulse duration
High energy density science	<mark>1st priority</mark> 30-40 keV	_	_	_	
Solid state physics (pump-probe)	_	2nd increase pulse energy after mono	_	<mark>1st</mark> ∼1 kHz	Radiation damage to the sample might be an issue
Nonlinear optics	-	_	2nd Availability of shorter pulse (FT-limited pulse)	<mark>1st</mark> High rep. rate	1. What is the counter part to XFELO/XRAFEL options at other facilities??
	I	I			2. Advanced two-color XFELs (seeded+seeded)