Current status and development of nanofocusing system at SACLA

J. Yamada¹, Y. Inubushi^{1,2}, T. Osaka¹, I. Inoue¹, H. Yumoto², T. Koyama², H. Ohashi², S. Matsuyama³, K. Yamauchi³, and M. Yabashi^{1,2}

¹RIKEN SPring-8 Center, ²JASRI, ³Osaka University

Background

2-satage nanofocusing system (50 nm and sub-10 nm) Large demagnification factor with compact facility **Optical setup of 50 nm 2-stage KB focusing system** Arrangement of sub-10 nm 2-stage KB focusing system ✓ High NA with small divergence of XFEL < U</p> XFEL puls Focusing optics 1 Upstream Total-reflection KB mirror Downstream tilaver KB mirr \checkmark Unique X-ay sciences were investigated using the 50 nm focusing system. K. Tamasaku et al., Nat. Photon. 8, 313 (2014). Focusing optics 2 H. Yoneda et al., Nature, 524, 446 (2015). Focal point 2 However,,, ✓ Designed before SACLA lasing. 72.247 ^L Source position was assumed to be the exit of last undulator. 10100 72372 176300 \checkmark Difficult tuning, but short life time of fine focus (\simeq) 176750 79072 2700 320 H. Mimura et al., Nat. Commun. 5, 3539 (2014). S. Matsuyama et al., Sci. Rep. 8, 17440 (2018). ✓ Throughput < 10 % (Slightly small acceptable aperture) </p> **One-stage nanofocusing systems (300 exa & new sub-10) have been developed.**

300 exa: 100~ nm focusing system (installed in summer 2017)

Optical design ✓ The system consists of **1-stage KB optics**.

Upstream mirror (Vertical)

- Source-mirror distance: 220 m
- Focal length: 500 mm
- Incident angle: 4.0 mrad
- Mirror length: 250 mm
- Spatial acceptance: 1 mm
- Numerical aperture: 1.0×10^{-3} →Focus size (diffraction-limit): 45 nm @ 12keV
- Demagnification factor: 440 \rightarrow Focus size (geometrical): *~180 nm

Downstream mirror (Horizontal)

- Source-mirror distance: 220 m
- Focal length: 240 mm
- Incident angle: 3.8 mrad
- Mirror length: 250 mm
- Spatial acceptance: 0.95 mm
- Numerical aperture: 2.4×10^{-3} →Focus size (diffraction-limit): 23 nm @ 12keV
- Demagnification factor: 918 \rightarrow Focus size (geometrical): *~87 nm

New sub-10 nm focusing system (under development)

Specification

- Focus size (average): 200 nm (V) \times 100 nm (H)
- Intensity: ~3×10²⁰ (=300 exa) W/cm²
- Rayleigh length: ~30 µm
- Throughput: ~25 %
- Tolerance of incident angle error: 1~2 µrad
- Cut-off energy: 12 keV
- Tuning time for mirrors: ~2 hours
- Lifetime of focus: > 10 hours

6 0.8

ヒ 0.4

6 -0.4

a -0.8

-1.2

1.2

6 0.8 **ک** _{0.4}

۵.8- **ک**

-1.2

- Sample: Foil, Liquid jets, Gas chamber, etc.

Position on detector (a.u.)

Position on detector (a.u.)

1/4 ۸

λ 3/16

λ 1/8

λ 0/1

λ 1/16 🖥

-λ 1/16 **S**

-_{λ 1/8} ≥

-λ 3/16

λ 1/4

λ 3/16

λ 1/8

λ 1/16

-λ 1/16

-λ 1/8

-λ 3/16

—Vertical

Horizontal

Simulation result: angle error vs focus size

Results of 1st commissioning @ SPring-8

- 1-dimensional (horizontal) focusing test was performed.

Compact but large demag. Schematic of old (2-stage KB) system aberration Magnification: $f'/L' \times f''/L''$ Schematic of new (1-stage advanced KB) system Magnification: f/L To focus the XFEL source ($\sim 60 \ \mu m$) down to 10nm, demag. factor of 6000~ is necessary. **Demag. factor of > 6000** is available with the

~145 m source-mirror distance in new system.

<u>Wavefront errors measured by grating-interferometer</u>

Obtained interferogram for horizontal direction (Talbot image)

<u>Wavefront errors < 0.4 rad (λ /16)</u> \checkmark ^LAccuracy of the system was extremely high.

Unique studies are expected

- ✓ Nonlinear X-ray physics: XFEL-pumped Ka laser, X-ray saturable absorption, etc. c.f. H. Yoneda et al., Nature Commun., 5, 5080 (2014).
- Diffraction measurement: fs-damage observation, etc. \checkmark

c.f. I. Inoue et al., Proc. Natl. Acad. Sci. USA. 113, 1492-1497 (2016).

Shape accuracy of mirror was 4~5 nm PV, characterized by grating-interferometer. \checkmark └ Goal is ~1 nm PV. Mirrors will be re-polished.

Calculated focusing intensity based on measured wavefront

Mirrors are still under developments. The system will be installed to BL3 (EH4c) in 2020 summer~.