Updates on Beamlines

Kensuke Tono (SACLA)

Contents

- 1. Operation in 'phase 2'
- 2. Research highlights
- 3. New capabilities
- 4. Summary

Operation 'Phase 2' for two years

• Parallel operation of 3 BLs from 2017B

Operation schedule (June 2019)

		June, 2019A					
	Mon	Tue	Wed	Thu	Fri	Sat	Sun
						1	2
BL1							
BL2							
BL3							
	3	4	5	6	7	8	9
BL1							
BL2							
BL3							
	10	11	12	13	14	15	16
BL1							
BL2							
BL3							
	17	18	19	20	21	22	23
BL1							
BL2							
BL3							
	24	25	26	27	28	29	30
BL1							
BL2							
BL3							

Machine tuning

User time

Preparation for user time

Commissioning

Study (Graduate Student, Basic Development, In-house)

Industry-Academy Partnership Program

Beamtime

Expanding opportunities in 'Phase 2'

- More user beamtime with 3 BLs
 - \Rightarrow 6,270 h user time in FY2018.
 - \Rightarrow Feasibility-check beamtime @BL2 (from 2017B)
 - \Rightarrow Beamtime allocation on a 12 h-a-day basis @BL2
- Opportunities for promotion programs
 ⇒ SACLA Basic Development Program
 ⇒ SACLA Research Support Program for Graduate Students
 ⇒ SACLA Industry-Academy Partnership Program
- High-power lasers

 \Rightarrow High power fs laser (500 TW): Open to users from 2018A. \Rightarrow High power ns laser (ILE, Osaka U.)

Three beamlines

⇒Poster No.2, Inubushi-san

	Type of experiment	Major instruments	Remarks
BL1 (40-150 eV, higher-order harmonics)	Ion/electron spectroscopy SX spectroscopy Ellipsometry Imaging	fs optical laser KB (~5 μm) Timing tool Nano focusing optics Opto-spintronics platform	Users are encouraged to use their own end- stations
BL2 (4-15 keV)	Fixed-target PX SFX CDI/SAXS P&P with high power laser	ns optical lasers KB (~1 μm) DAPHNIS (SFX) MAXIC-S/II (CDI) High power fs laser	Feasibility-check beamtime
BL3 (4-20 keV)	XRD WAXS Spectroscopy SFX, CDI (fs resolution) XPCS Laser-shock compression	fs optical laser SDO Timing tool CRL, KB (~1 μm) 300 exa (~0.1 μm) High-power ns laser (Osaka U.)	Double-pulse XFEL (~300 fs delay@10 keV) Self-seeding Polarization control

The facility assigns BL2 or BL3 to HX-FEL users according to the type of experiment.

For more efficient operation

Auto-positioning of XFEL beam/sample.

Auto tuning of BL optics

Sample injector (under development)

• Quick multiple-parameter optimization of XFEL (Intensity, bandwidth, beam size, etc.)

Contents

- 1. Operation in 'phase 2'
- 2. Research highlights
- 3. New capabilities
- 4. Summary

Time-resolved XRD of steel under ultrafast heating process

Tracking a nuclear wavepacket using ultrafast X-ray spectroscopy

Photoexcited Cu(I)-phenanthroline

Probing ultrafast electronic decay processes in molecules

Fukuzawa, Ueda et al., *Nat. Commun.***10**, 2186 (2019)

Real-time observation of X-ray-induced intramolecular and interatomic electronic decay in CH_2I_2

OPEN

ARTICLE

ittes://doi.org/10.1038/s41467-019-1004

Position-sensitive detector

Contents

- 1. Operation in 'phase 2'
- 2. Research highlights
- 3. New capabilities
- 4. Summary

BL1

- Nano focusing optics
- Experimental platform for opto-spintronics researches.

Basic Development Program Research Support Program for Graduate Student

SX nano focusing system

Nano focusing branch of BL1

Collaboration with U. Tokyo Motoyama-san, Mimiura-sensei => Talk Egawa-san, Yamaguchi-san, Yokomae-san => Posters

Experimental platform for materials science at BL1

- Number of proposals tends to increase at BL1.
 - => Common-use system will be useful.
- Experimental system for opto-spintronics researches is under development => Dr. Hirata and Prof. Matsuda (U. Tokyo), Talk in the next session SACLA Users' Meeting 2019

BL2

- MAXIC-S
- Large area detector (Rayonix MX-300HS)

MAXIC-S for nano-beam CDI

Collaboration with Hokkaido U. Suzuki-san, Nishino-sensei (Talk)

Installed into EH4b for more efficient operation (this summer).

SACLA Users' Meeting 2019BL3

BI 2

EH4b

EH4c

EH3

 \mathbf{R}

Large area detector for PX, WAXS

MX300-HS (Rayonix, L.L.C.) is now operated on the SACLA DAQ system.

	8 sensor	MX300-HS*		
Description	MPCCD (Phase Ib)	2x2 binned	4x4 binned	
Active area [mm ²]	110 x 110	300	x 300	
Max. frame rate [Hz]	60	10	33	
Image format	2048 x 2048 50 um	<mark>3840 x 3840</mark> 78 um	<mark>1920 x 1920</mark> 156 um	
Nominal Q.E. @12keV	0.2	0.8	0.8	

BL3

* https://www.rayonix.com/product/mx300-hs/

PX

For samples having large lattice constants. (longer camera distance).

WAXS

For wider angular range.

CITIUS detector will be technically available for SACLA.

- Small system (0.3M-pixel single sensor) from 2021.
- Deployment plan of larger area detectors will be determined after hearing user needs.

BL3

- Reflection self seeding
- Split-and-delay optics (SDO)
- Preparation for new sub-10 nm focusing system

- Seeded XFEL has been used in >10 users' experiments
- R&D is on going for achieving higher stability.

BL3

Hard X-ray split-and-delay optics (SDO) BL3

Open for user experiments from 2018B.

Photon energy range 5 – 15 keV Time delay range 0 – >100 ps <1 fs delay step Pulse energy of each pulse @10 keV ~0.3 µJ (SASE)

 \Rightarrow Poster No.4, Osaka-san

Collaboration with Osaka U.

~1 μ J (self-seed)

Autocorrelation measurement (preliminary)

21

Basic Development Program Research Support Program for Graduate Student

For new sub-10 nm focusing system

Advanced KB system Pair of hyperbolic & elliptic mirrors ('Wolter-III')

Collaboration with Osaka U.

 \Rightarrow Poster No.5, Yamada-san \Rightarrow Breakout session 1

Commissioning has started at SPring-8.

Layout change in BL3 EH4c

High power lasers

- Femtosecond laser (BL2 EH6, 500 TW)
- Nanosecond laser (BL3 EH5, 100 J)

Current capabilities of experimental platform with high power fs laser at EH6

<u>6 user experiments have been carried out</u>. Focusing Capability of XFEL

- Focused with sets of CRLs
- Minimum spot: a few um (FWHM) on sample

Typical Specs of High Power Laser

- One beam with f/10 off-axis parabolic mirror
- Maximum power: ~200 TW (~8 J/40 fs) on sample
- Minimum spot: ~20 µm (FWHM)
- Peak intensity: ~10¹⁹ W/cm²

400

200

-200

400

0

Arrival Time [fs]

Drift

18/04/18

04:00

18/04/18

08:00

Temporal overlaps of XFEL and laser

- Jitter in short term (~5 m): ~20 fs (rms)
- Drift in long term (~24 h): 0.7 1.0 ps

18/04/18

12:00

Date/Time

18/04/18

16:00

18/04/18

20:00

 \Rightarrow Poster No.8, Yabuuchi-san

Similar synchronization system with BOM-PD will be applied to the fs synchronized lasers.

 \Rightarrow Poster No.6, Owada-san

SACLA Users' Meeting 2019

150

100

50

Jitter

18/04/19

00:00

(24 h)

Standard

24

Experimental platform for combinative use of XFEL BL3 and high power ns laser

User operation from 2018B

100-J ns laser (ILE, Osaka U.)

- ~100 J (max.) - Pulse energy:
- 532 nm - Wavelength:
- Pulse duration: 3~10 ns (pulse shaping)
- Repetition rate: 0.1 Hz

 \Rightarrow Poster No.7, Miyanishi-san

XFEL

Summary

- Operation Phase 2 with 3 BLs is getting mature thorough twoyear experiences, but we still have many things to develop.
 - Beam injection to SP-8.
 - More advanced instruments & more efficient operation.
 - Effective user support, etc...
- Opportunities have increased.
 - Over 6200 h user time (FY2018).
 - Strategic research programs.
- New capabilities at BLs.
 - BL1: Opto-spintronics experimental platform, Nano focusing system
 - BL2: MAXIC-S
 - BL3: Reflection self seeding, SDO
 - High power lasers (500 TW fs laser, 100 J ns laser)
- Input from the users is welcome, important for directing the facility's R&D activities (optics, detectors, lasers, etc...).
- For successful beamtime, we should start discussion on experimental plans as early as possible.

After obtaining approval of your proposal

• Contact beamline scientists:

sacla-bl.jasri@spring8.or.jp

- Start discussion as early as possible:
 - Provide *Practical* (not only conceptual) information for setting up your experiment.
 - Final plan should be fixed at least 6 weeks prior to your beamtime.
- Make enough preparation:
 - Especially for experiments that need *non-standard* setup/bringin apparatus.
 - If necessary, apply for feasibility-check beamtime (for SFX users).
- Do experiment:
 - Users are encouraged to operate instruments by themselves.
 - User-friendly platforms and program interface (ExpCotrol APIs) are available (see Posters)

Typical schedule for preparation by the facility staff

Well-planned preparation is a key to successful experiment.

- Final experimental plan: ~6 weeks prior to the beamtime.
- Final timeline: ~3 weeks prior.

Thank you for your attention!