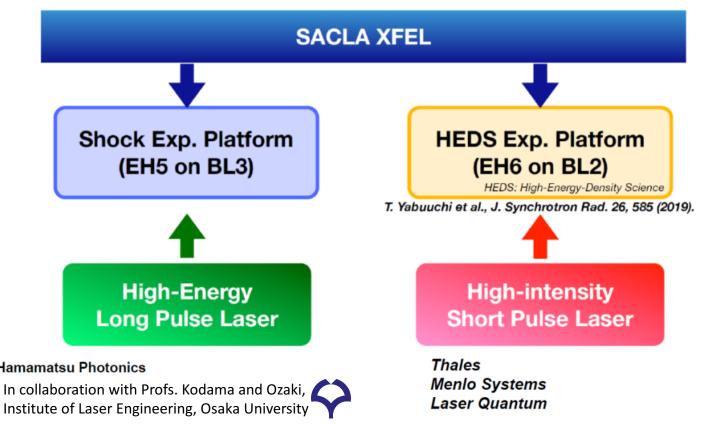
Summary on Breakout Session 4


Development of Experimental Platform with High Power Lasers

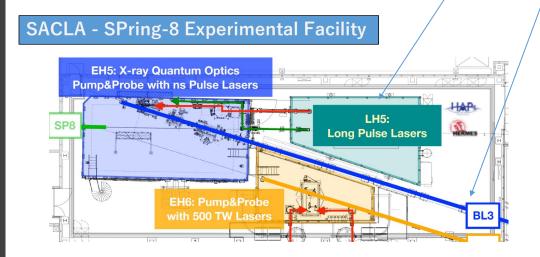
KEISÜKE SHIGEMORI (OSAKA UNIVERSITY) TADASHI TOGASHI (SACLA)

List of presenters

- K. Sueda, "Overview of high power laser systems at SACLA"
- M. Nakatsutsumi, "Characterization of a laser-irradiated dense-plasma surface using a grazing-incidence X-ray scattering"
- •T. Okuchi, "Laser-shock experiments at SACLA for simulating impact events in the early solar system: current status and perspective"

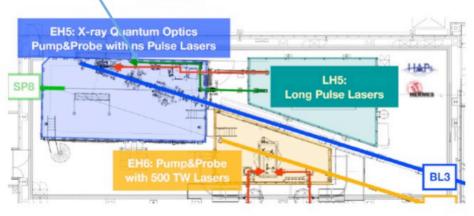
High-power laser systems available for combinative use with hard x-ray FELs at SACLA

Hamamatsu Photonics

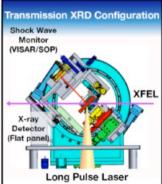

Institute of Laser Engineering, Osaka University

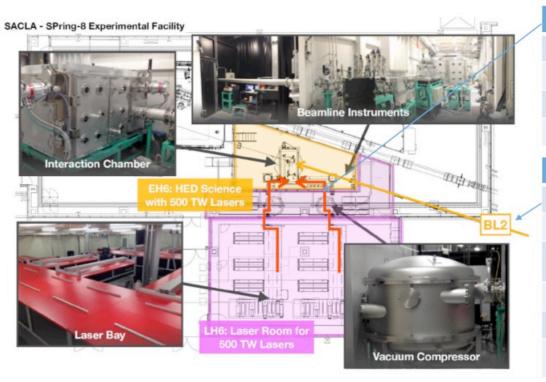
Beam paramters at EH5

Optical laser		
Pulse energy and duration	30J@5ns, 50J@10ns	
Wavelrngth	532 nm	
Rep. rate	0.1Hz	

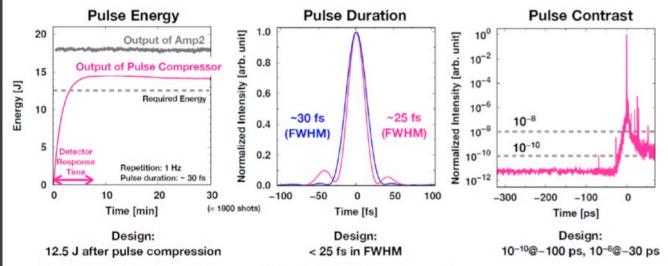



XFEL	
XFEL photon energy	4-20 keV
Band width	\sim 1 x 10 ⁻⁴ , < 5 x 10 ⁻³ (monochrome, pink beam)
Energy	\sim 600 μ J/pls@10 keV
Pulse duration	< 10 fs
Rep. rate	30 Hz
Focusing optics Advanced operation	KB mirrors for focus (sub-μm, 1D or 2D) Self-seeding Split-and-delay optics Two color


Experimental platform with a high energy ns laser at EH5


- An experimental chamber for shock experiments with a long-pulse laser was installed in summer 2018.
- Components for laser transport and focusing are compatible for ~100 J pulse in max.
- The chamber is designed specifically for XRD and imaging/SAXS experiments of shocked material using nano-second, high-energy long pulse laser.
- Switchable between 1D-focusing (for diffraction) and 2D-focusing (for imaging, SAXS) modes.

Beam paramters at EH6



Optical laser		
Pulse energy	~ 8 J	
Pulse duration	\sim 40 fs	
Wavelrngth	800 nm	
Rep. rate	1Hz	

XFEL		
XFEL photon energy	4-15 keV	
Band width	< 5 x 10 ⁻³	
Peak energy	\sim 1 x 10 ⁻⁴ , < 5 x 10 ⁻³ (monochrome, pink beam)	
Pulse duration	\sim 10 fs	
Rep. rate	30 Hz	
Focusing optics	CRLs for focus (\sim a few $\mu m)$	

High intensity fs laser performance 1

Space [hm]

1.0

Space [hm]

1.0

0.0

0.4

0.2

0.0

0.0

Space [hm]

Focused Spot

Focused profile is measured using attenuators (low reflective optics) after the final amplification to 10 J.

Energy fluc.: 0.14 J or 0.76% in rms (before compressor)

Pulse energy is attenuated after the full amplification before the pulse compression.

Feedback, Suggestion, comments...

For the short pulse laser (HEDS exp't):

- What is the reason of the damage?
- Pre-plasma measurement
- Plan for two-beam operation
- Second beam activation as a probe laser (small energy operation)

Feedback, Suggestion, comments...

For the short pulse laser (HEDS exp't):

- Possibility on installation of gas targets
- Improve time of Pumping/venting of the interaction chamber
- (Improve target holder for much more samples)
- Wider x-ray exit flange size
- Mitigate plasma x-ray background on ultrahigh intensity irradiation
- Homogeneous intensity profile at large spot size

Feedback, Suggestion, comments...

For the long pulse laser (Shock exp't):

- Shock experiments have been improved, improved, and improved
- Seeded pulse instead of pink beam
- More variety of pulse shape
- New detector with small background signal