New Instruments for Condensed Matter Physics

Presenter	Title
H. Nojiri	XFEL and high magnetic fields -application for field induced
Tohoku Univ.	electronic state transition and progress in spectroscopy-
A. Ikeda	XRD study of ultrahigh field induced crystals using 100 T pulse
Univ. Tokyo	magnet and XFEL: Status of development and prospect
H. Wadati	Studying spin dynamics in SACLA
Univ. Hyogo	
Y. Kubota	Instrument updates for condensed matter physics at SACLA
SACLA	

Sample Environment Magnetic Field Temperature Pressure Electric Field Photo Excitation Gas Absorption

Magnetic compounds
Superconductors
Molecules
Semiconductors
Metals

Materials

SACLA
Beam focus
Coherence
Energy dispersion
Time resolution
Stability
Stuffs
Software

XRD and XES in Pulsed Fields

H. Nojiri, Tohoku

Snap Shot XRD in Field Induced Spin Crossover Transition

100 T XRD for Magnetic field induced phase transition

Studying spin dynamics in SACLA H. Wadati, Hyogo Coherent diffraction imaging (CDI): Magnetic domains Probe: Diffraction pattern SACLA, SPring-8, Laboratory laser SACLA Delay • Pump: Probe 1 - 2 eV, (THz...) Magnetic Pump thin films pump laser (a) Time-resolved XMCD |XMCD/IXMCD.0, \text{\tin}\text{\texi}\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\tet Pt (trXMCD) total (trMOKE) Delay time (ps)

BL₁

Beam Line Updates

- Experimental station for soft-XFEL opto-spintronics (SACLA Basic Development Program) presented by Y. Hirata
- →Under development of a nano-focus system for spintronics study with Prof. I. Matsuda G and Prof. Mimura G (tr-MOKE measurements have been already operated.)

BL₃

- THz pump laser system
 - The basic system has been already constructed. We will continue improving.
 - We would like to get your feedback about the development, goal and science.
- Cooling system for ultrafast (optical laser pump-XFEL probe) measurement
 - The first prototype will be completed soon. (commissioning is scheduled in early 2020.)
 - We would like to get your feedback about the goal and science.

T_{min} (w/o radiation shield) Sample: 12.5 K 2nd stage: 6.7 K

Y. Kubota, SACLA