Soft X-ray FEL beamline

SACLA Users' Meeting 2017

Shigeki Owada On behalf of SACLA

Introduction

- Design & Performance
- User operation
- > Beamline upgrades
 - Arrival timing monitor
 - Sub-µm focusing system
 - Future plan

Introduction

- > Design & Performance
- User operation
- > Beamline upgrades
 - Arrival timing monitor
 - Sub-µm focusing system
 - Future plan

Utilization of soft X-ray at SACLA

SACLA started user operation in Jun. 2012

More research opportunities in softer X-ray region

Relocation & re-employment of the SCSS

SCSS (Sering-8 Compact SASE Source)

- SACLA prototype machine R&D for the compact FEL Utilization of FEL
- Milestone
 - 2005 Construction & commissioning
 - 2006 First lasing
 - 2007~ User operation
 - 2012~ User operation at SACLA
 - 2013 Decommissioned

HHG-seeded FEL, T. Togashi, et al., Opt. Express, 19, 317, (2011).

	SACLA	SCSS	Ratio
E-beam energy	8 GeV	250 MeV	32:1
Length	700 m	< 60 m	11:1
Accelerator units	64	2	32:1
No. of Undulators	18	2	9:1
Photon energy	4 - 15 keV	20 - 24 eV	< 700:1 ₅

Introduction

> Design & Performance

User operation

> Beamline upgrades

- Arrival timing monitor
- Sub-µm focusing system
- Future plan

Light source

Relocation of the SCSS to the SACLA undulator hall

Upgrade of the SCSS (SCSS+)

E-beam energy : ~ 250 MeV **Photon energy :** ~ 20 eV

SCSS (~2013)

2015 Oct. ~ ~ 500 MeV first lasing ~ 37 eV **2016 Aug. ~** ▲ ~ 800 MeV

Photon beamline

Distance from light source

Operation status

Operation parameters

	BL1 (SXFEL)						
E-beam							
Energy	250 MeV < 800 MeV		5 ~ 8 GeV				
Charge	~ 0.3 nC ~ 0.3 nC ~ 0.3 nC		~ 0.3 nC				
Rep. rate	20 Hz	60 Hz	30 Hz (60 Hz)				
Undulators							
Total length	9 m	14 m	106 m				
Periodic length	15 mm	5 mm 18 mm 18 mm					
K value	< 1.5 < 2.1 < 2.1		< 2.1				
FEL							
Photon energy	20 ~ 25 eV	40 ~ 150 eV	4 ~ 15 keV				
Pulse energy	10 ~ 30 μJ/pulse~ 80 μJ/pulse (@ 100 eV)~ 600 μJ/pulse (@ 10 keV)		~ 600 µJ/pulse (@ 10 keV)				
Pulse duration		a few hundred fs	< 8 fs 10				

Gain curve measurement

Estimation of 3rd harmonics at 100 eV

- > Pulse energy vs. Gas attenuator (N_2) pressure
- 3rd harmonics contribution is estimated at 100 eV

Introduction

> Design & Performance

User operation

> Beamline upgrades

- Arrival timing monitor
- Sub-µm focusing system
- Future plan

User operation

- ✤ User operation: Jul. 2016 ~
- Beamtime : 5 ~ 7 shifts (1 shift = 12h)
- ✤ 6 ~ 7 proposals / half year

Introduction

- > Design & Performance
- User operation
- > Beamline upgrades
 - Arrival timing monitor
 - Sub-µm focusing system
 - Future plan

Arrival timing measurement at BL1

- Reflectivity change combined with spatial encoding Small penetration depth of GaAs (< 30 nm @100 eV)</p>
- > 1D focusing for enhancing efficiency
 - ~ 5 μ J/pulse, 70 μ m (H) × 3300 μ m (V), FWHM
 - => fluence = ~ 3 mJ/cm² << damage threshold

Results

Arrival timing monitor

Wavefront-splitting for beam branching

- Elliptical mirror for 1D focusing (f = 1300 mm)
- Branching ratio : < 10 %
- Installation & Commissioning : 2018 May~

Arrival timing monitor (2018 Jun. ~)

Beamline upgrade

Plane mirror with 1.5 deg glancing angle

- Beam axis : Horizontal
- Beam height : 1505 mm => 1220 mm (@focus position)
- ✤ Installation : Aug. 2018 ~

Sub-1µm focusing system

Using KB mirrors...

Beam size become smaller = Mirror length become shorter

Light source position = KB focus position

Results

Spot size measured by knife-edge scan

<u>Peak intensity : ~1 × 10¹⁷ W/cm² (80 µJ, ~100 fs)</u>

Perspectives

C-band accelerator units for higher energy

E-beam e	energy : ~	0.8 GeV	 < ~ 1.7	GeV	
Photon e	nergy : ~ 100	eV @K=2.1	V < ~ 470	eV @K=2	2.1
Gun Booste Buncher S-	r -band accelerator C-band ac	celerator C-band accele	rator		
	■·■·■				
Chopper	Bunch compressor	Bunch compressor Extra space	e for additional	Undulator accelerator	units Beam dump

- Polarization control (helical undulator, etc.)
- Soft X-ray/Hard X-ray pump-probe experiment SCSS+ linac is synchronized to SACLA main linac

Summary

- The SCSS was re-employed and upgraded. (~100 µJ @ 100 eV)
- ➢ We started user operation from Jun. 2016.
- We will continue facility upgrades and beamline development.

Thank you for your attention